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Evaluation of the Euclidean distortion of a distance-regular graph using semidefinite programing
method
Hirotake KURTHARA

Let X be a metric space and F be an embedding from X to the £2-Hilbert space. The distortion of F' is defined by the product
of the Lipschitz constant of F and the Lipschitz constant of F~1, and the Euclidean distortion of X is defined by the infimum of
distortion amongst the embedding of X. It is not easy to determine the Euclidean distortion.

There are many researches of the Euclidean distortions of finite graphs. Moreover, for distance-regular graphs, lower bounds for

the Euclidean distortions are known. In this paper, using semidefinite programing method, we rediscover lower bounds of Linial,

London and Rabinovich.
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1 Introduction

Let (X,dx) and (Y, dy) be metric spaces, and F be
a map from (X, dyx) into (Y, dy). For a positive real
C, a map F is called a C-bilipschitz embedding if
there exists r > 0 such that

rdx(z,y) < dy (F(z), F(y)) <rCdx(z,y) (1)

for any z,y € X. A bilipschitz embedding is an em-
bedding which is C-bilipschitz for some C € Ryg.
Remark that if F' is a bilipschitz embedding then F
is injection. The smallest constant C for which there
exists 7 > 0 such that (1) is satisfied is called the
distortion of F. (It is easy to see that such smallest
constant exists.) The infimum of distortions of bilip-
schitz embeddings of X into Y is denoted cy (X).
The distortion of F is equal to

supayex 2 (P(@).F W)
THY

e
T#y

The numerator of the above is called the Lipschitz
constant of F' and the reciprocal of the denominator
is called the Lipschitz constant of 1, By the def-
inition of distortion, the distortion of F' is at least 1
and if the distortion of F' is equal to 1 then F' is an
isometry. Thus c¢y(X) > 1 and if ¢y (X) = 1 then
X and Y are isometric.

When Y = £, we use the notation cy(-) = ¢,(*)
and call this number the £,-distortion of X. The
parameter co(X) is called the Euclidean distortion
of X. We can obtain a trivial upper bound for ¢,(-)
of a finite graph. For a finite graph I' = (X, E) with
diameter d, let F: T' — RX, 2+ e, (standard rep-
resentation) as £5% |, then || F\(z)— F(y)||, = 21/P(1-
0zy), where 65y is the Kronecker delta. Hence the
distortion of F is d. This implies ¢,(T") < d.

Let X be an n-points metric space. Bourgain(?
showed that c3(X) = O(logn). However, it is not
easy to determine the exact value of the Euclidean
distortion co(X) of a given n-point metric space.
We have few examples of finite metric spaces whose
Euclidean distortion is exactly given. The list of
the examples only includes Hamming graphs (due
to Enflo(®), Johnson graphs and all strongly reg-
ular graphs (due to Vallentin(")). Linial, London
and Rabinovich®) gave an algorithm to find the Eu-
clidean distortions of finite metric spaces, and Linial
and Magen(®) showed some properties of the optimal
embedding for the Euclidean distortions. However
it is not easy to determine the Euclidean distortion
of given metric space.

Our aim is to find a “good” evaluation of the Eu-
clidean distortion of a finite graph I' of diameter d.
We already have the trivial evaluation:

Our concern is sharper evaluation of c3(I'). The re-
sults of Linial, London and Rabinovich® also give
some lower bounds for the Euclidean distortions.
After their work, Vallentin(") showed specific lower
bounds for the Euclidean distortions of distance-
regular graphs using the parameters of the graphs.

Theorem 1.1 (Vallentin(M). Let T' be a distance-
regular graph with d, {0n}3_, be the eigenvalues of
T and {v;}&_, be the polynomials related to T'. Then
the Euclidean distortion ca(T) of T' have the follow-
ing lower bound:

d*va(6o) v1(0o) — v1(6h)
min .
’U]_(@o) 1<h<d ’Ud(eo) — 'Ud(eh)
The definition of distance-regular graph and the

notation appeared in Theorem 1.1 are explained in
Section 2.1.

ca(T)? >
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In this paper we first rediscover the results of
Linial, London and Rabinovich® and Linial and
Magen(S) using semidefinite programing method.
Next we refine Vallentin’s lower bound. Finally we
give upper bounds for the Euclidean distortions of
distance-regular graphs using the primitive idempo-
tents of the graphs.

2 Preliminary

Throughout this paper, for a set X, let Matg(X)
be the set of matrices of size |X| over R such
that the rows and the columns are indexed by X,
and Symg(X) be the set of symmetric matrices in
Matgr(X). For M € Matg(X) and =,y € X, My,
denotes the (z,y)-entry of M.

2.1 Distance-regular graph

We consider only finite undirected graphs without
loops or multiple edges. Let T' = (X, E) be such
a graph, where X and E are the vertex and edge
sets. For two vertices = and y, dr(z,y) denotes the
length of the shortest path joining z and y. The
diameter of I' is the maximal distance occurring in
I'. A connected graph I with diameter d is distace-
reguler if each of the following numbers

Hz e X|or(z,2)=i—1, dr(z,9) =1} (2
[{z € X|0r(z,2) =1, Or(z,y) =1} 3)
Hz € X|0r(z,2z) =i+1, Or(z,y) =1} (4)

(i = 0,1,...,d) does not depend on the choice of
z,y € X with dr(z,y) = ¢. The numbers (2), (3)
and (4) are denoted by b;, a; and ¢;, respectively. We
always assume that cg = dg = 0. The constant bq is
called the valency of T and is denoted by k. Remark
that a; + b; +¢; = k for each ¢ = 0,1,...,d. The
numbers a;, b;, ¢; are called the intersection num-
bers and the array {bo,b1,...,bd—1;¢1,C2,...,Cd} is
called the intersection array of T

Let I' = (X, E) be a distance-regular graph with
diameter d and |X| =n. For i =0,1,...,d, let 4,
be the matrix in Matg(X) and the (z,y)-entry is 1
whenever z and y are at distance ¢ and 0 otherwise.
We call A; the i-th distance matriz of I'. We abbre-
viate A := A; and call this the adjacency matriz of
I'. We have the recurrence relation

AA=b; 1A 1 +a; A+ cip1 A

This recurrence relation implies that there exist
polynomials v;(6) of degree exactly 4 such that 4; =
v;(A4). Note vp(8) = 1 and v1(0) = 0. We find that
Ag, A1,..., Ay form a basis for a commutative al-
gebra 2 = Spang{4;}¢ , C Symg(X). We call

Jh TS EE P ERF RS ESE 48 5 (20164 1 A)

the Bose-Mesner algebra of I'. Since A; = v;(A4), it
turns out that A generates 2. By(® P45 9 has a
second basis Ey, 1, ..., Eg of the primitive idempo-
tents of I', and A can be written as A = 32%_, 6 En,
where 0}, is the eigenvalue of A associated with Fj,.
Remark that {Ej, }¢_, are positive semi-definite. We
denote by my, the multiplicity of 8. For an eigen-
value 6 = 8, we will also write Ey instead of Ey,.

Remark 2.1. Take M € 9. Since {E}$_, are pos-
itive semi-definite, M is positive semi-definite if and
only if there exist non-negative numbers ag, ai, ... aq
such that M = Ei:o anEy,.

Since A; = v;(A) and E), are idempotents, we
have
d
A = vi(0n) B (5)
h=0

for ¢ € {0,1,...,d}. Let P be the square matrix of
size d + 1 whose the (h,)-entry is v;(8)), that is,

vo(fo) v1(6o) --- wa(bo)
_ vo(f1) wvi(61) -+ va(6h)
w(ba) n(6a) - valba)

Then (5) implies that P is non-singular. Hence there
exists a square matrix Q = (Qh(i))g’ hep Of size d+1
such that

d
1 .
Bh=— ; Qn(i)A;,
that is,
d
Z Qh(k:)vl(ﬁh) = Ndy (6)
h=0
for k,1 € {0,1,...,d}. Is is known that
QO(i):]' (iE{O,l,...,d}), (7)

and
vi(0n) _ @n(i) (8)
vi(6o)  Qn(0)
for each h,i € {0,1,...d}. The reader is referred to
Bannai-Ito(!) for more properties of P and Q.

Remark 2.2. For M = Y7 _anEy and ¢,y € X
with Or(z,y) = i, we have

d
Mmy = (Z ahEh>
Ty

h=0

d 1 d
— (Z ah;l- Z Qh (’L)AZ)
h=0 =0 z

1 d
= E Zath(i).
h=0

Y
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2.2 Embedding of
spheres

graphs onto

Definition 2.3. Let (X,dx) be a finite metric space
and (Y,dy) be a metric space. We say that an em-
bedding F': X — Y is faithful if for every two pairs
(z,y), (z',v") € X x X we have

dy (F(z), F(y)) = dy (F(2'), F(y))
whenever dx(z,y) = dx(z',y’).

Suppose (X,dx) = (T,dr) and
then we write dy (F(z), F(y)) d
or(z,y) = 1.

Definition 2.4. Let (X,dx) and (Y,dy) be metric
spaces, and let F' be an embedding from X onto Y.

F' is faithful,
v () whenever

o A pair (z,y) € X x X is called expanded if
dy (F(z), F(y))/dx(z,y) is mazimal among all
pairs in X x X.

e A pair (z,y) € X x X is called contracted if
dy (F(z), F(y))/dx(z,y) is minimal among all
pairs in X x X.

Moreover suppose (X,dx) = (I',0r) and F' is faith-
ful.

o A distance i is called expanded if there exists
an ezpanded pair (z,y) such that Op(z,y) = 1.

e A distance i is called contacted if there exists a
contracted pair (z,y) such that dr(z,y) = 1.

Lemma 2.5. LetI' = (X, E) be a graph of diameter
d, and F be o faithful embedding I' onto a sphere
SN. Let 8 be the distance among elements of F(I')

on SV. Then the ezpanded distance is only 1, i.e.,
0(1)/1 > 9(k)/k for k € {2,3,...,d}.

Proof. For k € {2,3,...,d}, there exists a path
To ~ T ~ Ty ~ -+ ~ zp such that Or(zg,zk) = k
and Or(zi—1,@;) = 1 for ¢ € {1,2,...,k}. By the
triangle inequality, we have

O(k) = O(F (zo), F ()

k k
<Y 0(F (i), Fla:) = > 0(1) = k(1),

i=1 f=1

ie., 0(1)/1 > 9(k)/k follows.
Assume 9(1)/1 = 8(k)/k, then

k
O(F(z0), F(zx)) = Y O(F(zi-1), F(=:))
i=1
holds. This implies that F(zo), F(zk-1), F(zk)
lie on a line. However, this contradicts that
F(z0), F(zg_1), F(zk) lie on SV, Hence we get
o(1)/1 > 8(k)/k. O

For a finite subset Z in a Euclidean space, the
Gram matriz G of Z in Symg(Z) is defined by
Ggy = x -y for ¢,y € Z, where - is the standard
inner product of the Euclidean space.

Lemma 2.6. Let T' = (X,E) be a graph. For a
semi-definite matriz M in Symg{X), there exists an
embedding of T' into the Fuclidean space of dimen-
sion Rank M.

Proof. Since M is semi-definite, there exists
(Rank M x |X|)-matrix B such that BTB = M.
Then we can regard the column vectors of B as vec-
tors in RRankM O

Let I' = (X, E) be a distance-regular graph with
d, {0n}¢_, be the eigenvalues of I' and {En}¢_,
be the primitive idempotents of I'. For Ej, put
m = Rank E. We define the map F} from X into
a Buclidean space such that, for z € X, Fp(z) is
the z-th column of Ey. Since Ej is an idempotent,
E;’:Eh = E} holds. This implies the Gram matrix
of F,(T') is Ep. By Lemma 2.6, F}, is embedding of
I" into R™. Moreover

Fa(&) - Fa(y) = (Br)ay = ~@(i)

for z,y € X with dr(z,y) = i. Note that for each
z € X, we have ||Fy(z)||? = Qn(0)/n, hence Fy(T')
is on a sphere S™~1. On the other hand we have

[ (), Fr(w)lI* = (Qn(0) — Qu(3))/n  (9)

for z,y € X with Or(z,y) = 1, hence F}, is faith-
ful. By Lemma 2.5, the expanded distance is only
1. Therefore we get the following -

Lemma 2.7. F}, is embedding of T’ onto S™ ! such
that the expanded distance is only 1.

3 Semi-definite programing

For a finite graph I' = (X, E) with the path distance
Or, let C be the set of (M, r?) satisfying (M,r?) #
(0,0), M € Symg(X) is positive semi-definite, r > 0
and

‘ Mmm + Myy - 2Ma:y - T28F(w>y)2 2 0
for z,y € X (z # y) and, for a non-negative real
D, let Sp be the set of (M, r?) satisfying (M, r?) #
(0,0), M € Symp(X) and

~ Mg — Myy + 2Myy +r>DOr(z,y)? > 0

for 2,y € X (z # y). Then C and Sp are cones in
SymR(X) o R.
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Lemma 3.1. There exists a \/E—bil@pschitz embed-
ding of T into Lo if and only if CNSp # 0.

Proof. Assume F is a v/D-bilipschitz embedding of
I into £3. Let G be the Gram matrix of F(X).
Then ||F(z) — F(y)||? = Geo + Gyy — 2G4y. By the
definition of bilipschitz, we can check (G,r?) € ¢
and (G, r?) € Sp for some 7 > 0. Hence this implies
CNSp # 0. ‘

Assume (M, %) € (N Sp. By Lemma 2.6, there
exists an embedding F' of I into the Euclidean space
with

| F(z) — F(y)“z = Mgo + Myy — 2Myy. (10)

Then F satisfies the condition of +/D-bilipschitz.
d

Lemma 3.1 implies that C is the Euclidean dis-
tortion of T' if and only if C = inf{v/D|D >
0 with CNSp # 0}. The study of the intersection of
two cones C and Sp using convex analysis is called
positive semi-definite programming method. If T is
distance-regular, the two cones C and Sp became
more simple.

Theorem 3.2 (Vallentin("). Let T' = (X, E) be a
distance-reqular graph. Then, there exists a faith-
ful embedding of T' into Euclidean space with mini-
mal distortion. In particular, this embedding is in a
sphere centered at the origin in the Fuclidean space.

Theorem 3.2 yields that for T' is distance-
regular, an optimal solution (M,r2) € CNSp of
inf{y/D|D > 0 with C N Sp # 0} can be found in
2 ®R. By Remarks 2.1 and 2.2, C :=CnN (A B R)
can be regarded as a cone

a'hZO (OShSd),

R >0,
(a0, a0, R) | 23000 an(Qn(0) — Qn(d))
—Ri’>0 (1<i<d),

(CL(),.U,U:d,R) #0

in R%*2 and also Sp := SpN(2A®R) can be regarded
as a cone

an€R (0<h<d), RER,
3 d ,
=23 h=0r(Qnr(0) — Qn(3))
(@0, a0, B) | Ba 00 (1<i<d),
(aoa"'aad’R)7éO

Henceforth, we write (a, R) or ((ap)¢_, R) instead
of (ag,...,aq,R). For (a,R),(a',R’) € R2 the
standard inner product is given by (a, R)-(a/, R) =
Zi:o apaj, + RR'. The dual cones of C and Sp are
defined by

C* = {(b,s) e R¥*?|(a,r) - (b,s) >0, (a,r) € C}

N TR B EEM A TR ES 48 5 (201542 1 A)

and
St = {(b,s) € R*?|(a,r)-(b,s) >0, (a,7) € Sp},
respectively. Then C* is written in

{(b,8)|bh >0 (0 < h < d), s> 0}

d
+ {Zai ((2(@n(0) - @n(i)5zy %)

()57;20},

- (1)
and also Sp is
d
{;ﬂi ((-2(@u(0) - Qu())30.i°D) | i >0
(12)

Lemma 3.3. For two nonnegative reals D and D',
if D < D/, then Sp C Spr.

Lemma 3.4. IfCNSp # 0, then C*N(—=8p)° =0,
where (—83)° is the interior of —S}.

Proof. Assume C*N(—S5)° # 0. Let (a, R) € CNSp
and (b,s) € C* N (=8p)°. Since (a,R) € C and
(b, s) € C*, we have (a, R) - (b,s) > 0. On the other
hand, by (a, R) € Sp and (b, s) € (—Sp)°, we have
(a,R) - (b,s) < 0. It is contradiction.

O

Theorem 3.5 (SDP method). If D € R satisfies
C* N (=8p) # 0, then D < co(T')? holds.

Proof. By Lemmas 3.1 and 3.3, we have CNS¢ # 0
for any C with C > c3(T")%. This implies if CNSp =
0, then D < cp(T')%. By Lemma 3.4, if C*N(—S})° #
0, then D < c3(T"). Moreover if C* N (—Sp)° =
C*N(—=8%) # 0, then D < ¢(T') also. O

Using Theorem 3.5, we find the lower bound for
c2(T). Fix nonnegative reals b = (bo,b1,...,bq).
Assume C* N (=8}) # 0, then there exist positive
reals o;, B; and s such that

d
26— o) (@n(0) - @u@) (1)

i=1

for h € {0,1,...,d} and

d d
s— Y ai@?=-Y Bi’D (14)
i==1

i=1

bp =

by (11) and (12).

Remark 3.6. Under the assumption, we have by =
0. Because by = 2 Y% (Bi—04)(Q0(0)~Qo(4)) =0
by (7).
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Let @ = (Qn(0) — Qn(i){pey and P =
*%(Uz‘(@h))g,i:l-
Lemma 3.7. Q! = P.
Proof. (6) and (7) imply that, for k,1 € {1,2,...,d},

(0 — Qo(0)ui(60))

+ —(ndr,; — Qol(k)vi(6o))

1 1
=E’Uz(9o) + Ok, — 501(90)

=0,
Hence the desired result holds. O
By (13), we have

(bn)fey = %(ﬁz’ — )i, Q.

By Lemma 3.7, we have
n ~

(ﬂi - az‘)?=1 = §(bh)i=1P.

Hence, for i € {1,2,...,d},
18
Pi—oi=—3 };bhvi(ﬁh).

Since o = B; + & ZZ:I brui(8p) > 0 and B; > 0, we
have

d
1
Bi 2 max{0, — > brvi(6n)}. (15)
h=1
Put v; := § Zizl brvs(0y) and vF := {i| £; > 0}.
By (14), we have
Sy i’ — s

d .
Ei:l Bz‘lz

Then
LB+t —s
> "
Yy it — s
i, B
In this situation, if we take

e if s
Bi=4 " ff%<0,a'i= 0 ?7<0,8=0
0 ify,>0 v ify >0

=1+

123

then D is maximized for fix numbers b, and the value
D is "

z'ie'y+ Vil

Diey- Vi

Put

Eie’ﬁ ’Yiiz

ey Wl

 Vieqt i brvi(6h)
Sieq- 12 Cher brvi(0h)

A(b) =~

Theorem 3.8.
cz(T)? > sup { A(b)|bo = 0,b1,b2,...,b4 > 0}.

For nonnegative numbers b and positive real
¢, we can check A(b) = A(cb). Therefore
there exists b € [0,1]%! such that b’ attain
sup { A(b)| bg = 0,b1,ba,...,bq > 0}.

Theorem 3.9 (Linial, London and Rabinovich®).

c2(T)? > max {A(b)| by = 0,b1,b2,...,b4 €[0,1]}.

Lemma 3.10. For any (a,R) € CNSp and (b,s) €
C*N(=8%), we have ZZ=0 arbp + Rs = 0.

Proof. Since (a,R) € C and (b,s) € C*, we have
(a,R)-(b,s) > 0. This implies 37 _, anbp+Rs > 0.
On the other hand, since (a,R) € Sp and (b,s) €
—8%, we have (a,R) - (b,s) < 0. This implies
S anbs + Rs < 0. Hence we get S 5_, anbn +
Rs=0. O

Theorem 3.11 (Linial and Magen(®)). Assume b
satisfies A(b) = c3(I")? and (a, R) € CNS,y(ry2. Put

82(5) = 230 an(Qn(0) — Qu(3)). Then following
hold.

(i) Yh—oanbn = 0.

it) For i € «t, the distance i is contracted, i.e.,
2

8(i) k)

- = mini<k<d &

(ii1) For i € ~, the distance i is ezpanded, i.e.,
a(i) a(k)
— T maXi<k<d -

Proof. The element of C* N (—S:2 ([‘)2) related to b
forms

d
{bh + ) %2(Qn(0) - Qh(i))} D P

ieyt

or

d
{ > 72(Qn(0) —Qh(m}

i€y~ h=0 <%
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[(i) and (ii)] Apply the relation (a, R) and (16) to
Lemma 3.10, we get

Zah <bh + > %2(@Qn(0 h(i)))

i€yt

-R Z vii®

ieyt

is vanish, i.e.,

Zahbh+ Z 7:0%( z)—RZ vii2 = 0.

ieyt i€yt

2
Since R = minj<p<q z,;(gk—), we have

. 9%(k)
Zahbh-l_ Z it ( T 1Ska k2 =0

ieyt
Since Ei:o apbp, > 0, ;42 > 0 for 4 with v; > 0, and
8%(i) : 8%(k) d _
Tt —minj<k<d T > 0 we have }:h o @rbr =0
and ——2—) minj<k<d ——2—— for i € v+
[(111)] Apply the relatlon (a,R) and (17) to

Lemma 3.10, we get

Zah (Z Vi —(Qn(0) = Qni ))) —a(T)’R Y wid?,

% i€y~

is vanish, i.e.,

> 30%(6) = Rep(T)? > id® = 0.

i€y~ i€y~

2
Since Rep(T)? = maxi<p<d Q-k—(;“l, we have

5 (20 - g, 29 o

‘ 1<k:<d k2
%

anda—jgi—) <

Since vi2 < 0 for ¢ € 57,

8% (k 8% (i 8% (k
maxi<k<d j(—), we have —3-4 ( ) — = MaXi<k<d W(_) for
1€y,

O

4 Upper and lower bound for
ca(I)

In this section, we give bounds for the Euclidean
distortion of a distance-regular graph I'.

4.1 Lower bound for c(T")

Forl € {2,3,...,d}, let
— Q;(0) - @;(1)
PO LB 0,020

Qj (0)¢Qg 0]

AN TEE S E 2R EE 48 5 (2015 £ 1 A)

and
b = (Qn(0) — Qr(1)) — m(1)(Qn(0) — Qn(1))

(1 < h < d). By the definition, b;f) >0forl <h<
d. Then

1 d
w52 bi i(0n)
=5 Z Qr(0

— Qn(1))vi(6n)

- m(l)(Qh( ) = Qn(D)vi(6n)
— 5 (61 —m(D1,),
ie, m=-5<0,m=>5%mdl)>0and v, =0

for i # 1,1. Hence we have A((bg))ﬁzl) = >m(l).
Moreover we have the following result.

Theorem 4.1.

1
a2 iy, PEG—EE
= 0004050 !
By (8), Theorem 4.1 can be expressed by
lzvl(é’o) 01(90) — ’U1<(9')
2> L
e2(I)* 221212554 v1(00) wi(Bo) — vi(6;)

4.2 Upper bound for cy(I")

We consider the embedding F; in terms of E;. By
Lemma 2.7, the distortion of F} is

Qi(0)-Q;(1)
12

Q;(0)-Q; (1)
2

min 2<1<d,

Qj(0)7éQg(l

— omex 2200 -@5(1)
2<1<d,

Q5 (0)#Q; (1) Qi(0) = @)

Therefore we have the following result.
Theorem 4.2.

2 o
o) < mo, 2% Q;(0) —
Q;(0)#Q;(1)
By (8), Theorem 4.2 can be expressed by
2 - ‘
(D)2 > min max PPvi(6o) v1(60) — v1(6;)
1<j<d2<i<d v1(bg) vi(fo) — vi(6;)

2@5(0) - Q;(1)
Q)

Remark 4.3. Fvery distance-regular graph which
we have already checked satisfies j = 1. Moreover
almost distance-reqular graphs satisfy | = d. How-
ever there exist some counterezamples of | = d. A
distance-regular graph with

{22,21,20,3,2,1;1,2,3,20,21,22}

is such an example.
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