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On quasi-discrete modules and lifting modules

Yosuke Kuratomi

A module M is said to be lifting if, it satisfies the following property: For any submodule X of M, there exists a
decomposition M = X" @ X such that X* C X and X N X™ is a small submodule of X**. This concept is dual
one of extending modules. In the study of lifting modules, the following fundermental problem remains as an open

problem :
“When is a direct sum ®;»M; of lifting modules {M;}; lifting ?”

Let M = @y M; is extending. Then, for any submodule X of M = @;M;, we have a decomposition M = X* & X**
such that X is an essential submodule of X*. In the dual problem above, “how X ** should be” is an important point.
From this viewpoint, in [6], we introduced “generalized injectivity (ojectivity)”, a new concept of relative injectivity,
and using this injectivity we gave some results for a finite direct sum of extending modules. Afterward, S.H.Mohamed
and B.J.Miiller [20] defined a dual to “generalized injectivity” as “generalized projectivity” and gave some results
that concerned with the study of the problem above.

In this paper, we consider whether generalized projectivity passes to finite direct sums in the case that each module

is hollow or quasi-discrete.
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Introduction

A module M is said to be lifting if, it satisfies the fol-
lowing property:

(D1) For any submodule X of M, there exists a
decomposition M = X" @ X" such that X* C X
and the kernel X/X* of the canonical epimorphism
M/X* = M/X is a small submodule of M/X*, equiv-
alently, X N X** is a small submodule of X**. This
concept is dual one of extending modules.

A ring R is said to be (semi)perfect if any (cyclic) R-
module has projective cover, equivalently, any (finitely
generated) free R-module is lifting. These rings de-
fined by H. Bass [2]. In 1963, E. Mares [18] defined
‘semiperfect modules’ as generalization of semiperfect
rings as follows: A projective module P is said to be
semiperfect if any factor module of P has a projective
cover. Moreover, in 1983, through the study of dual
concept ‘(quasi-)continuous modules’, K. Oshiro [21] de-
fined (quasi-)semiperfect modules as follows:

Definition A module M is said to be semiperfect
(vesp. gquasi-semiperfect) if M is lifting with the follow-
ing condition (D3) (resp. (D3)).

(D2) If A is submodule of M such that M/A is iso-
morphic to a direct summand of M, then A4 is a direct

summand of M.

(D3) If A and B are direct summands of M with
M = A+ B, then AN B is a direct summand of M.

These modules are generalizations of semiperfect
modules in the sense of Mares and were renamed as

‘(quasi-) discrete modules’ by Mohamed and Miiller [19].

The concept of projective cover is dual to the one of
injective hull. However, for any module M, projective
covers of M need not exist. For this reason, any sub-
module of a module M has a closure, but need not have
a co-closure in M. For example, a submodule 27 of Zz
does not have a co-closure in Zz. In such a meaning,
it is hard to treat lifting modules more than extending
modules.

Since extending and lifting properties of modules take
roots inside of ring theory, over the past few decades a
considerable number of studies have been made on these
properties. However the following fundermental prob-

lems remain as open problems:

Problem A : When is a direct sum of extending mod-

ules extending ?

Problem B : When is a direct sum of lifting modules

lifting 7
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These problems are unsolved even in the case finite di-
rect sums. Why are these problems difficult? The point
of asserting on Problem A is the following:

For any submodule X of M = &;M,;, assume that
there exists a decomposition M = X* @ X™* such that
Then, ‘how X**
should be’ is important. We must find X" with the

X is an essential submodule of X™*.

relation with each M;. In many cases, we can take it
with @7 M; as X*, where each M is a submodule of ;.
However, there exists & example that this property does
not hold (For example, Z-module Gz = Z® Z is extend-
ing, but the property above does not hold). In 2002,
K. Oshiro et.al. [6] asserted that extending modules are

studied by dividing into 3 types below:

(A) For any submodule X of M, there exists a direct
summand X" of M such that X is essential submodule
of X*.

(B) Let M = @®;M;. For any submodule X of M,
there exist a direct summand X™ of M and submodules
M! of M; (i € I) such that M = X* @ (®;M]) and X
is essential submodule of X*.

(C) For any submodule X of M and any decompo-
sition M = @, N;, there exist a direct summand X~
of M and submodules N; of N; (j € J) such that
M = X* & (®sNj) and X is essential submodule of
X,

A module M with the condition (A) is a usual extend-
ing module. A module M with the condition (B) (resp.
(C)) is said to be an estending module for M = &; M,
(resp. eztending module with the internal exchange prop-
erty). In particular, a module M is said to be eztend-
ing with the finite internal exchange property if M sat-
isfies (C) for any finite index set J. A decomposition
M = & M; is said to be exchange decomposition if, for
any direct summand X of M, there exist submodules
M of M; such that M = X & (b, M,) (cf. [20]). Hence
a module M = @;M; with condition (B) is extending
with the exchange decomposition M = ¢;M,.

In [6], Oshiro et.al. introduced the generalized relative
injectivity as follows:

Let A and B be modules. A is said to be generalized
B-injective (or B-ojective) if, any submodule X of B and
any homomorphism f : X — A, there exist decompo-
sitions A = A; @ A», B = B, ® B>, a homomorphism
hi : By — A; and a monomorphism hy : Ay — B
satisfying the following properties (x), (xx):

(¥) X C B ®ha(4s).

(*x) For £ € X, we express x in B = B; & B>

AETUH T3 i S P AR 78 ity

as Then

f(z)

= 11 + 29, where 1 € By and =2 € Bs.
:h/1($1)+h;l(m2)-

By using this relative injectivity, we obtain the follow-

ing:

Theorem A [6, Theorem 2.15] Let My,---, M, be
extending modules and put 3 = M & --- @ M,,. Then
the following conditions are equivalent:

(1} M is extending for M = M, @ --- & M,.

(2) M; is generalized @;x; M;-injective for any i €
N Y
) @;x:M; is generalized M;-injective for any ¢ €

-, n}

In this paper, we introduce a dual concept of relative
generalized injectivity and consider whether generalized
projectivity passes to finite direct sums in the case that

each module is hollow or quasi-discrete.

1. Generalized Projectivity and Direct
sums of Lifting modules

Throughout this paper R is a ring with identity and
all modules considered are unitary right R-modules. A
submodule S of a module M is said to be a small sub-
module, if M # K + S for any proper submodule K of
M and we write S < M in this case. Let M be a mod-
ule and let N and K be submodules of M with K C V.
K is said to be a co-essential submodule of NV in M
if NJK < M/K and we write K C. N in M in this
case. Let X be a submodule of M. X is called co-closed
submodule in M if X has not a proper co-essential sub-
module in M. X' is called a co-closure of X in M if
X' is a co-closed submodule of M with X’ C. X in M.
K <g N means that K is a direct summand of N. Let
M = M; & M, and let ¢ : M; — My be a homomor-
phism. Put (M, 2 M) = {mi — ¢(m1) | m1 € My}
Then this is a submodule of M which is called the graph
with respect to M; — M,. Note that M = M, & M> =
(M, % M) & M,.

The reader is referred to [3], [5], (8], [13], [19], [21]-
[25] for research on lifting, (quasi-)discrete modules and

exchange properties.
‘We recall Problem B.

Problem B : When is a direct sum of lifting modules

lifting 7

In the same as extending modules, we should divide

lifting modules in 3 types as follows:
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(A’) For any submodule X of M, there exists a direct
summand X~ of M such that X* C. X in M.

(B’) Let M = @;M;. For any submodule X of i/,
there exist a direct summand X* of M and submodules
M; of M; (i € I) such that M = X™ @ (®rM]) and
X*C. X in M.

(C’) For any submodule X of M and any decomposi-
ton M = @yN; of M, there exist a direct summand
X* of M and submodules N} of N; (j € J) such that
M=X"®(®s;N;)and X" C. X in M.

A module M with the condition (A’) is a usual lifting
module. A module M with the condition (B’) is said to
be lifting for M = @®;M; (or lifting with the exchange
decomposition M = ®;M;. A module M with the con-
dition (C’) is said to be lifting with the internal exchange
property. In particular, a module M is said to be lifting
with the finite internal exchange property if M satisfies
(C’) for any finite index set J.

In 2000, Keskin [13] studied about this problem and
obtained the following:

Theorem 1.1 (Keskin) Let My, -, M, be lifiing
modules and let M = M, @ --- & M, be an amply sup-
plemented module. If M; is M;-projective (¢ # j), then
M is lifting.

In this theorem, converse implication need not hold.
For example, Z/4Z & Z/2Z is lifting, but Z/27Z is not
Z/4Z-projective.

In 2004, Mohamed and Miiller [20] studied the ques-
tion whether the dual to Theorem A holds or not, and
they defined a dual ojectivity as follows:

Let A and B be modules. A is said to be generalized
B-projective (or B-dual ojective) if, for any homomor-
phism f : A - X and any epimorphism g : B —» X,
there exist decompositions A = A, @ Az, B = B; ¢ By,
a homomorphism h; : A1 — B; and an epimorphism
ho 1 By — A such that goh: = f|a, and fohs = g|B,.

Now we introduce properties of generalized projectiv-
ity (cf.[14], [17], [20]).

Proposition 1.2 Let A and B be modules. Then

(1) If A is B-projective then A is generalized B-
projective.

(2) Let B be a lifting module. If A4 is generalized
B-projective then A is im-small B-projective.

(3) If A is generalized B-projective, then A is gener-
alized B’-projective for any direct summand B’ of B.

(4) Let A be a module with the finite internal ex-

change property. If A is generalized B-projective, then
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A’ is generalized B-projective for any direct summand
A’ of A.

(5) Let M = A& B be amply supplemented. If A
is generalized B-projective, then A’ is generalized B-
projective for any direct summand A’ of A.

(8) Let A be an indecomposable module. Then A is
generalized B-projective if and only if A is almost B-
projective (cf.[1], [9], [10]).

The following is due to Mohamed and Miller [20].

Theorem 1.3 (Mohamed-Miiller) Let M = A® B.
Then A is generalized B-projective if and only if when-
ever M =N+ B wehave M =N @A @B' =N+ B
with N' C N, A' C A and B' C B.

In [14], we obtained the following:

Theorem 1.4 (cf. [14]) Let Mi,- -, M, be lift-
ing modules and put M = M1 @ --- & M,. Then the
following conditions are equivalent:

(1) M is lifting for M = M1 & - & M,.

(2) A and B are mutually generalized projective for
any A <g (®BrMy) and any B <g (bpM;), where
K and L are any two disjoint nonempty subsets of
{1,-,n}.

(3) M/ and T are relative generalized projective for
any M! <@ M; and any T <g (%, M;), where
te{l, - ,n}

Theorem 1.5 (ct. [14]) Let My,---, M, be lifting
modules with the finite internal exchange property and
put M =M, & - & M,. Then the following conditions
are equivalent:

(1) M is lifting with the finite internal exchange prop-
erty.

(2) M is lifting for M = M, & -+ & M,,.

(3) @k My, and @1 M, are relative generalized projec-
tive for any two nonempty disjoint subsets K and L of
{1,---,n}.

(4) M; and @;j«; M; are relative generalized projective
for any ¢ € {1,--- ,n}.

The study of a direct sum of hollow modules (in-
decomposable lifting modules) have been researched
by several authors, e.g., Baba-Harada[l], Dung[4],
Harada[7], Inoue[11], Keskin[13] etc. Now we introduce
the following:

Lemma 1.6 Let My, -, M, be lifting modules (-
supplemented modules) and put M = M; @ --- & M,.
Then, for any submodule X of M, there exists a di-
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rect summand M of M; (i = 1,---,n) such that
M=X+(M&  -®M)and XN(M & - M) <

My & & M,.
By using results above, we see the following:

Theorem 1.7 (cf. [15]) Let Hy, -, H, be hollow
modules and put M = H,®---®H,,. Then the following
conditions are equivalent:

(1) M is lifting with the (finite) internal exchange
property.

(2) M is lifting for M = H, @ --- @ H,.

(3) H; is generalized Hj-projective (i # j).

Proof. Let M be a module with indecomposable de-
composition. Then M has the finite internal exchange
property if and only if M has the internal exchange prop-
erty. Hence, by Theorem 1.5, (1) < (2) holds. (2) = (3)
holds by Proposition 1.2 and Theorem 1.4.

(3) = (2) : By Theorem 1.5, we only need show the
case of n > 3. Assume that the statement holds the case
of n — 1. Let X be a proper submodule of M and put
I ={1,---,n}. We may assume that X is not small in
M. By Lemma 1.6, there exists a nonempty subset J of
I such that M = X +(®,H;) and XN(@,H;) < @y H;.
Now we put K = I — J. Since X is not small in M, K
is nonempty and so we can take « € J and 8 € K Let
v:M — M/(X+(®,-(s}H;)) be the canonical epimor-
phism and put f = v|g, and g = v|g,, . Then g is an epi-
morphism. Since Hg is generalized H,-projective, there
exists a homomorphism ¢ : Hg — H, such that gop = f
-++ (1) or there exists an epimorphism ¢ : H, — Hj such
that fop =g --- ().

The case (i): For any y € (Hs 5 H,), there ex-
ists hg € Hpg with y hg — @(hg). Then v(y) =
v(hs — @(hg)) = f(hg) — gplhs) = f(hs) — f(hs) = 0.
Hence (Hs % H,) C X + (Bs-{arHj). Now we put
Q= (Hp 5 Ha) ® (®)_(a)H;). Then '

M = QOHa®(®x—(syHy) and Q C X+(@y_ (o} Hj).

And we see Q = (Q N X) + (By_gurHj) - (»). As
h.dim@Q < n — 1, by assumption, there exists a decom-
position Q = Q' ® (®,_(a1 H;) ® (Hp 5 H,) such that
Q' C. QN X in Q, where H; C H; and (Hs 5 H,) C
(Hs 5 H,). By (*), wesee Q' # 0 andso (Hs 5 H,) =
0 or H; =0 for some j € J — {a}. And we see M =
Q& (B (a1 H)) & (Hp D Ha) & Ho @ (B —(p Hi) =
QS (®)—(a)H;))®Hp S Ho & (B (py Hr), where Hg C
Hp. Now put T = (B (o} H) ) DHs O Ha ®(Dx— (53 Hr)-
By assumption, for TN X C T, there exists a decompo-
sition T = Z @ (y_(a1 H)) ® Hy ® H, & (Dr_y1pHr)

TN LS i S PR R

such that Z C. TN X in T, where H; C H;, H, C H;
and ffg C Hg. Then we see

M=Q®ZaT and X=Q &(TnX),

where T' = (®,_(a) H}) ® Hy ® H, ® (Dx—(py Hy). As
XNT' LT, Q" ®Z C. X in M. Therefore M is lifting
for M =H,& --®H,.
The case (i4) : By the same argument as in the case
(1), we see M is lifting for M = H, & - ® H,,.
O

2. Generalized Projectivity of Quasi-
Discrete Modules

Since the structure of generalized projectivity is com-
plicated, we do not know whether generalized projectiv-
ity passes to finite direct sums even in the case that each
module is lifting. However, by Theorem 1.5, 1.7, we see
the following:

Let Hy,---,H, be hollow mod-
ules. If H; is generalized H;-projective (i # j), then H;

Proposition 2.1

and @;4; H; are relative generalized projective.

The following is generalization of the proposition
above.

Proposition 2.2 (cf. [16]) (1) Let N be a quasi-

discrete module and let M = M, @- - -@ M, be lifting for

M = M@ - -@M,. If M; is generalized N-projective for
any ¢ € {1,--- ,n}, then M is generalized N-projective.

(2) Let M be a quasi-discrete module and let N =
N1 @ - @ N, be lifting for N = N1 ®d - & N,,. If
N; and M are relative generalized projective for any
1 € {1, -+ ,n}, then M is generalized N-projective.

By Theorem 1.5 and Proposition 2.2, we obtain the

following:

Theorem 2.3 Let M;,--- , M, be quasi-discrete
modules and put M = M1 & ---@® M,. Then the follow-
ing conditions are equivalent:

(1) M is lifting with the (finite) internal exchange
property.

(2) M s lifting for M = M1 @ - - & M,,.

(3) M, is generalized M;-projective (i # j).

Now we introduce the following:

Proposition 2.4 Let M = M, & --- ® M, be an
exchange decomposition and let M; be Mj-projective
(¢ # j). Then M satisfies the condition (Ds3) if and only
if each M, satisfies the condition (D3).
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Proof. By [25, 41.14(1)], ‘Only if’ part holds.

‘I’ part : We only need show the case of n = 2. Let
U and V be direct summands of M with M = U + V.
Since M = M; @ M- is an exchange decomposition,
there exist decompositons M; = M] & M] (i = 1,2)
such that M = U ® M, @ M}. Since M, and M, satisfy
(Ds), by [25, 41.14(4)], M is M/ -projective (i = 1,2).
As M; is Mj-projective (i # j), M] is M; -projective
(¢ # j). Hence M| & M5 is My & M4 -projective. Let
m : M — M/V be a canonical epimorphism and put
f=7luiemy, g=7lv. AsM =U+V, gis an epimor-
phism. By U ~ M| ® My, M; & M is U-projective,
and so there exists a homomorphism h : M| ® M) — U

with go h = f. Hence we see
M=(M &M 5 U)eU and V2 (M &M 5 U).

Thus V = (Mi&M} 2 U)@(UNV). and so UNV <g M.
Therefore M satisfies (Ds). O

As immediate consequences of Theorem 2.3, Proposi-
tion 2.4 and [19, Lemma 4.23|, we obtain the following:

Theorem 2.5 (cf. [13]) Let Mi,- -, M, be quasi-
@ M,. Then
M is quasi-discrete if and only if M; is M;-projective
(i #4).
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