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Abstract 

A Massive MIMO wireless communication system is an important factor for the next generation of mobile communication, but 

the computational complexity for signal detection is a problem due to many antennas the systems employed. The lattice-reduction-

aided linear detection method is one of the solution, and the element-based lattice reduction is a lattice reduction technique that requires 

a practical computational complexity. We found that there still be the wasted process in the element-based lattice reduction, so we 

propose the improved method. In some experiments, we show that our method can reduce 63.3% of the number of iterations in detecting 

process compared to original via the number of antennas in exchange for just 35.4% of the bit-error-ratio performance. 
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1. Introduction 

 

Massive MIMO (Multiple-Input Multiple-Output) wireless 

communication systems are receiving a lot of attention as the 

important technique for the 5th generation of mobile communication 

systems. Massive MIMO systems employ many antennas for transmit 

and receive, so it can meet the requirements of consumers that the 

higher data-rate or more reliable communication than ever. It, 

however, has some problems such as a signal detection. The best 

performance of bit error ratio (BER) is obtained by the maximum 

likelihood detection (MLD) method[1]. With the MLD method, the 

detector calculates the Euclidean distance between the received signal 

and all of the signal candidates and choose the nearest signal point in 

constellation as the estimated signal. Instead of the best BER 

performance, the computational complexity in MLD exponentially 

increase according to the number of transmit antennas[2]. In view of 

the complexity, the best method is a kind of linear detection (LD) such 

as zero forcing (ZF) methods and minimum mean square error 

(MMSE) methods. These methods have linear complexity, but the 

BER performances of them are inferior to that of MLD. The massive 

MIMO wireless communication systems have a lot of transmit 

antennas. That’s mean that the LD is the best way for the system 

because the complexity of MLD or some kinds of improved MLD 

increase with the increase in the number of antennas, and some kinds 

of improved MLD are not practical in view of the computational 

complexity. 

Recently, the Lenstra-Lenstra-Lovasz (LLL) algorithm is so 

attractive to researchers of massive MIMO. The LLL is one of lattice 

reduction (LR) algorithms, and the LLL can obtain the nearly 

orthogonal lattice basis in polynomial time[3]. The LLL algorithm is 

used as a pre-process of LD, and the orthogonality of each signals 

transmitted at the same timeslot are enlarged in order to detect them 

easily. The LLL algorithm can obtain the orthogonality in polynomial 

time, but the computational complexity of the LLL is not small 

enough. In order to solve the problem, element-based lattice reduction 

(ELR) algorithm is proposed[4]. ELR algorithm tries to minimize the 

diagonal elements in noise covariance matrix, and it requires lower 

computational complexity than The LLL. In this paper, we indicate 

the waste point of ELR algorithm in view of the computational 

complexity, and propose the solution for it. 

 

2. System Model and ZF Detection Method 

 

The system model is shown in Fig. 1. The signals are 

transmitted from 𝑁T antennas and reached 𝑁R antennas at receiver. 

The signals pass through the additive white Gaussian noise (AWGN) 

and quasi-static Rayleigh fading channel.  

 

 
Fig. 1  System model of massive MIMO. 

 

In this paper, we consider the block transmission model shown 

as 

 

𝐘 = 𝐇𝐗 + 𝐍, (1) 

 

where 𝐘 = [𝑦1 𝑦2  ⋯ 𝑦𝑁R]
T
  and 𝐗 = [𝑥1 𝑥2  ⋯ 𝑥𝑁T]

T
 

denote the received signal vector and the transmitted signal vector, 

respectively. 𝐍 = [𝑛1 𝑛2  ⋯ 𝑛𝑁𝑅]
T
 denotes the noise vector with 

zero mean and covariance matrix 𝜎w
2 𝐈𝑁𝑅 , where 𝐈𝑁𝑅  is 𝑁𝑅 ×𝑁𝑅 

identity matrix. 𝐇  denotes an 𝑁𝑅 ×𝑁𝑇  complex channel matrix. 

The transmitted signal vector is guessed from the received signal 

vector as the estimated signal vector 𝐗′ = [𝑥′1 𝑥′2  ⋯ 𝑥′𝑁T]
T
 in 

detection process.  

 The easiest way to guess the transmitted signal is to multiply 

𝐇−1 to  , but 𝐇 is not always the squared matrix, so the Moore-

Penrose pseudo inverse of 𝐇 is used in ZF method. Thus, we obtain 

the estimated signal vector 𝐗ZF
′  shown in Eq. 2[5]. 



24                               北九州工業高等専門学校研究報告第 52号(2019年 1月) 

𝐗𝐙𝐅
′ = 𝐐(𝐇†𝐘) = 𝐐((𝐇𝐇𝐇)−𝟏𝐇𝐇𝐘), (𝟐) 

 

where 𝐇† denotes the Moore-Penrose pseudo inverse of 𝐇, 𝐇H is 

Hermitian matrix of 𝐇, and 𝐐(∙) is the symbol-wise quantizer to the 

constellation set. 

 

3. Lattice-Reduction-Aided Detection 

 

  MLD realize the best BER performance, but its complexity is 

so high. ZF is one of the fastest detection method, but its accuracy is 

not so good. As you can guess, making the accuracy of ZF higher or 

making complexity of MLD lower are the solution. The former is the 

basic policy of the lattice-reduction-aided linear detection. 

 A lattice is defined as 

 

𝓛 = {∑ 𝒂𝒊𝒃𝒊
𝑵
𝒊=𝟏 |𝒂𝒊 ∈ ℤ[𝒋]}, (𝟑) 

 

where ℤ[𝑗] denotes the Gaussian integer ring whose elements have 

a form ℤ + 𝑗ℤ, 𝑏𝒊(𝑖 = 1,⋯ ,𝑁) denotes the basis vectors of lattice 

𝓛 . The real and imaginary parts of 𝑥𝑖  are one of {2𝑚 + 1 −

√𝑀,𝑚 = 0,1,⋯ , √𝑀 − 1} if M-QAM is employed, so 𝑥𝑖 ∈ ℤ[𝑗]. 

It follows that 𝐇𝐗 ∈ 𝓛 , where the basis is the columns of 𝐇 =

[𝐡1, 𝐡2, ⋯ , 𝐡NT]. 

  In order to find more “orthogonal” basis, LR algorithm reduce 

the lattice basis. The process is equivalent to find a unimodular matrix 

𝐓 such that 𝐇̃ = 𝐇𝐓 make the same lattice as 𝐇[6]. If the number 

of transmit antennas is two, the Gaussian reduction algorithm[9] is 

optimal, and various LR algorithms are proposed for the system 

employed more antennas than 2[5]. Anyway, we get the Eq. 4 after 

multiply the 𝐇̃† to 𝐘. 

 

𝐖′ = 𝐇̃†𝐘 = 𝐓−𝟏𝐗 + 𝐇̃†𝐍 ≡ 𝐙 + 𝐍′. (𝟒) 

 

As the elements of 𝐗  are parts of the M-QAM set, the real and 

imaginary parts of the element of 𝐛 = 𝐓−1{𝐗 − (1 + 𝑗)𝟏𝑁T×1}/2, 

where 𝟏𝑘×𝑚 is the 𝑘 ×𝑚 matrix whose elements are all 1, are in 

consecutive integer sets. Thus we obtain the estimate of 𝐙[10, 11],  

 

𝐙̃ = 𝟐𝐛̃ + (𝟏 + 𝒋)𝐓−𝟏𝟏𝑵𝑻×𝟏, (𝟓) 

 

where 𝐛̃ = ⌊(𝐖 − (1 + 𝑗)𝑻−𝟏𝟏𝑁𝑇×1)/2⌉  and ⌊∙⌉  denotes a 

rounding function. Finally, we obtain estimated signal vector 𝑋𝐿𝑅𝑍𝐹
′  

by ZF as Eq. 6. 

 

𝑿𝑳𝑹𝒁𝑭
′ = 𝑸(𝐓𝐙̃) = 𝑸(𝐗 + 𝟐𝐓 ⌊

𝟏

𝟐
𝐇̃†𝐍⌉) , (𝟔) 

 

4. ELR Algorithm and Problem Statement 

 

 The ELR is a LR technique and it can find the reduced lattice 

in view of pair-wise error ratio (PEP). The ELR algorithm obtain 𝐇̃ 

and 𝐓 from 𝐂 = (𝐇H𝐇)−1 which is a scaled covariance matrix of 

the noise after equalization. 

  First, ELR choose a pair of indices (𝑖, 𝑘 ), determine λ𝑖,𝑘 ∈

ℤ[𝑗], and update the 𝑘-th column of matrix 𝐓′ = (𝐓−1)H as 

 

𝒕𝒌
′ = 𝒕𝒌

′ + 𝝀𝒊,𝒌𝒕𝒊
′, (𝟕) 

 

where 𝑡𝒌
′  is the 𝑘-th column of 𝑻′. The 𝑘-th column and 𝑘-th row 

of 𝐂̃ = (𝐇̃H𝐇̃)
−1

 are also updated as follows, 

 

𝒄̃𝒌 = 𝒄̃𝒌 + 𝝀𝒊,𝒌𝒄̃𝒊 (𝟖) 

𝒄̃(𝒌) = 𝒄̃(𝒌) + 𝝀𝒊,𝒌
∗ 𝒄̃(𝒊), (𝟗) 

where, 𝑐̃𝒌  and 𝑐̃(𝒌)  are 𝑘 -th column and 𝑘 -th row of 𝐂̃ , 

respectively, and superscript * denotes the complex conjugate. These 

updates make 𝐇̃ be updated as follows, 

 

𝒉̃𝒊 = 𝒉̃𝒊 − 𝝀𝒊,𝒌𝒉̃𝒌, (𝟏𝟎) 

 

where, ℎ̃𝒊  is 𝑖 -th column of 𝐇̃ . Thu, 𝑐̃𝑘,𝑘 , which is the (𝑘, 𝑘 ) 

element of 𝑪̃, is updated as 

 

𝒄̃𝒌,𝒌 = 𝒄̃𝒌,𝒌 + |𝝀𝒊,𝒌|
𝟐
𝒄̃𝒊,𝒊 + 𝝀𝒊,𝒌

∗ 𝒄̃𝒊,𝒌 + 𝝀𝒊,𝒌𝒄̃𝒌,𝒊. (𝟏𝟏) 

 

Note that the diagonal elements except for 𝒄̃𝑘,𝑘 is not updated. The 

amount of decrease of 𝑐̃𝑘,𝑘 is Δ𝑖,𝑘 represented as Eq. 12, and 𝑐̃𝑘,𝑘 

is minimized when 𝜆𝑖,𝑘 satisfies Eq. 13[5]. 

 

𝚫𝒊,𝒌 = −|𝝀𝒊,𝒌|
𝟐
𝒄̃𝒊,𝒊 − 𝝀𝒊,𝒌

∗ 𝒄̃𝒊,𝒌 − 𝝀𝒊,𝒌𝒄̃𝒌,𝒊. (𝟏𝟐) 

𝝀𝒊,𝒌 = −⌊
𝒄̃𝒊,𝒌

𝒄̃𝒊,𝒊
⌉ . (𝟏𝟑)  

ELR algorithm terminates the process when 𝜆𝑖,𝑘 becomes zero. The 

ELR algorithm is summarized in Table 1. 

 

Table 1  Element-based lattice reduction algorithm 

Input: 𝐇    Output: 𝐇̃, 𝐓 

(1) 𝑪̃ = (𝐇H𝐇)−1, 𝐓′ = 𝐈𝑁 

(2) 𝐃𝐨 

(3)  𝜆𝑖,𝑘 = −⌊𝒄̃𝒊,𝒌/𝒄̃𝒊,𝒊⌉ 

(4)  𝐈𝐟 𝐚𝐥𝐥 λi,k = 0, ∀𝑖 ≠ 𝑘, 𝐠𝐨𝐭𝐨 (11) 

(5)  𝐅𝐢𝐧𝐝 𝐭𝐡𝐞 𝐥𝐚𝐫𝐠𝐞𝐬𝐭 𝐫𝐞𝐝𝐮𝐜𝐢𝐛𝐥𝐞 𝒄̃𝑘,𝒌 

(6)  𝐂𝐡𝐨𝐨𝐬𝐞 𝒊 = argmax𝑖=1,𝑖≠𝑘
𝑁𝑇 Δ𝑖,𝑘 

(7)  𝒕𝒌
′ = 𝒕𝒌

′ + 𝜆𝑖,𝑘𝒕𝒊
′ 

(8)  𝒄̃𝒌 = 𝒄̃𝒌 + 𝜆𝑖,𝑘𝒄̃𝒊 

(9)  𝒄̃(𝒌) = 𝒄̃(𝒌) + 𝜆𝑖,𝑘
∗ 𝒄̃(𝒊) 

(10) 𝐖𝐡𝐢𝐞(𝐭𝐫𝐮𝐞) 

(11) 𝐓 = (𝐓′−𝟏)H, 𝐇̃ = 𝐇𝐓 

 

  By the way, the PEP of LR-aided ZF detection is calculated [5] 

as 

𝑷(𝒛𝒊 → 𝒛̃𝒊|𝐇) = 𝑨(√
|𝒆𝒛𝒊|

𝟐

𝟐𝝈𝒘𝟐 𝑪̃𝒊,𝒊
) , (𝟏𝟒) 
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where 𝑧𝑖  and 𝑧̃𝑖  denote 𝑖-th element of 𝐙 in Eq. 4 and 𝐙̃ in Eq. 

5, respectively, 𝑒𝑧𝑖 = 𝑧𝑖 − 𝑧̃𝑖, and 

 

𝑨(𝒙) =
𝟏

√𝟐𝝅
∫ 𝐞𝐱𝐩(−

𝒕𝟐

𝟐
)𝐝𝐭

∞

𝒙

. (𝟏𝟓) 

 

As you see, the PEP is determined by 𝑐̃𝑖,𝑖  especially at high signal to 

noise ratio (SNR), so the LR algorithm reduce the diagonal elements 

of 𝐂̃. ELR also tries to do so, but the PEP is influenced by 𝑒𝑧𝑖 and 

𝜎𝑤
2  . It means that the diagonal elements of 𝐂̃  have to be small 

enough but not need to be minimized. ELR algorithm minimize them, 

so there is unnecessary process in it. 

 

5. Improvement of ELR 

 

  As we said, diagonal elements have to be just small enough, so 

the following two ideas are our policy to improve ELR algorithm; (1) 

the termination condition of ELR is not “all of 𝜆𝑖,𝑘 become zero” but 

“all 𝜆𝑖,𝑘 become almost zero” and (2) make 𝑐̃𝑘,𝑘 small roughly but 

not severely. Based on these two ideas, our proposal is to use a floor 

function instead of a rounding function in Eq. 13. With this function, 

𝜆𝑖,𝑘  becomes almost zero faster than original. Note that the BER 

performance also decrease if the initial orthogonality is low. After all, 

we propose to use Eq. 16 instead of Eq. 13. 

 

𝝀𝒊,𝒌 =

{
 
 

 
 − ⌊

𝒄̃𝒊,𝒌
𝒄̃𝒊,𝒊
⌉ (𝒄̃𝒌,𝒌 > 𝜶)

− ⌊
𝒄̃𝒊,𝒌
𝒄̃𝒊,𝒊
⌋ (𝒄̃𝒌,𝒌 ≤ 𝜶)

(𝟏𝟔) 

 

where ⌊∙⌋ denotes a floor function and 𝛼 denotes the threshold. In 

order to determine the threshold 𝛼 , investigate the PEP in Eq. 14 

again. First, we assume that minimum orthogonality can be obtained 

if the PEP is smaller than 10−4 by tradition. Since 𝐴(3.7) ≅ 10−4, 

the PEP is smaller than 10−4 if the following condition is satisfied, 

 

𝒄̃𝒌,𝒌 <
|𝒆𝒛𝒌|

𝟐

𝟐𝟕. 𝟑𝟖𝝈𝒘𝟐
. (𝟏𝟕) 

 

The right term of Eq. 17 is threshold 𝛼 . After all, our proposal is 

shown in Table 2. 

 

6. Experiments 

 

  We conducted some experiments with MATLAB 2018a to 

verify the superiority of our algorithm. Through the experiments, we 

assume that the modulation in transmitter is 64 QAM, the channel is 

additive white Gaussian noise and quasi-static Rayleigh fading, and 

only receiver has channel information.  

 

6.1 Performance via SNR 

 First, the BER performance and the average number of 

Table 2  Our algorithm 

Input: 𝐇    Output: 𝐇̃, 𝐓 

(1) 𝑪̃ = (𝐇H𝐇)−1, 𝐓′ = 𝐈𝑁 

(2) 𝐃𝐨 

(3)  𝐅𝐢𝐧𝐝 𝐭𝐡𝐞 𝐥𝐚𝐫𝐠𝐞𝐬𝐭 𝐫𝐞𝐝𝐮𝐜𝐢𝐛𝐥𝐞 𝑐̃𝑘,𝑘 

(4)  𝐈𝐟 𝑐̃𝑘,𝑘 > α 𝐭𝐡𝐞𝐧 

(5)   𝜆𝑖,𝑘 = −⌊𝑐̃𝑖,𝑘/𝑐̃𝑖,𝑖⌉ 

(6)  𝐄𝐥𝐬𝐞 

(7)   𝜆𝑖,𝑘 = −⌊𝑐̃𝑖,𝑘/𝑐̃𝑖,𝑖⌉⌋ 

(8)  𝐄𝐧𝐝 𝐢𝐟 

(9)  𝐈𝐟 𝐚𝐥𝐥 λi,k = 0, ∀𝑖 ≠ 𝑘 𝐭𝐡𝐞𝐧, 𝐠𝐨𝐭𝐨 11 

(10)  𝐂𝐡𝐨𝐨𝐬𝐞 𝒊 = argmax𝑖=1,𝑖≠𝑘
𝑁𝑇 𝚫𝒊,𝒌 

(11)  𝒕𝒌
′ = 𝒕𝒌

′ + 𝜆𝑖,𝑘𝒕𝒊
′ 

(12)  𝒄̃𝒌 = 𝒄̃𝒌 + 𝜆𝑖,𝑘𝒄̃𝒊 

(13)  𝒄̃(𝒌) = 𝒄̃(𝒌) + 𝜆𝑖,𝑘
∗ 𝒄̃(𝒊) 

(14) 𝐖𝐡𝐢𝐞(𝐭𝐫𝐮𝐞) 

(15) 𝐓 = (𝐓′−𝟏)H, 𝐇̃ = 𝐇𝐓 

 

iterations in a process of detection in our proposal with different 

threshold 𝛼 are shown in from Fig. 2 to Fig. 5.  

 

 
Fig. 2  BER via SNR for our algorithm with 𝛂=0.4, 0.5, and 0.6. 

 

 
Fig. 3  The Number for iterations via SNR for our algorithm with 𝜶=0.4, 
0.5, and 0.6. 
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Fig. 4  BER via SNR for our algorithm with 𝜶=1.0, 2.0, and 3.0. 

 

 
Fig. 5  The Number of iterations via SNR for our algorithm with 𝜶=1.0, 

2.0, and 3.0. 

 

 Fig. 2 and Fig. 3 are the case of 𝛼 = 0.4, 0.5, and 0.6, and 

Fig. 4 and Fig. 5 are the case of 𝛼 = 1.0, 2.0, and 3.0. In Fig. 2 and 

Fig. 4, the horizontal axis and vertical axis indicate the SNR and BER, 

respectively. In Fig. 3 and Fig. 5, the horizontal and vertical axis are 

the SNR and the average number of iterations in a process of detection, 

respectively. In these simulation, the number of transmit and receive 

antennas are 40, and SNR is 30dB. As you see, the number of 

iterations become smaller with almost the same BER performances 

when the threshold becomes smaller. Of course, the BER 

performance with 𝛼 =0.4 is superior to that with 𝛼 =0.6 or 𝛼 =0.5, 

but the difference between them is inconsiderable. In Fig. 4 and Fig. 

5, you can also see that the number of iterations are not so different 

whether 𝛼 is 2.0 or 3.0. Comparing from Fig. 2 to Fig. 5 and other 

similar experiments, 𝛼 = 1.0  looks good in view of tradeoff 

between the number of iteration and BER. 
 Next, the BER performance and the number of iteration of ZF, 

original ELR-aided ZF, and ours are shown in Fig. 6 and Fig. 7 whose 

horizontal axis and vertical axis indicate the SNR and BER, 

respectively. Both of the number of transmit and receive antennas are 

40 and we use 𝛼=1.0 for ours experimentally. You can see that ELR-

aided and ours-aided ZF defeat the original ZF, and that our algorithm 

shows almost the same BER performance as original ELR despite of 

 
Fig. 6  BER via SNR for ZF and LR-aided ZF. 

 

 
Fig. 7  The number of iterations via SNR for ZF and LR-aided ZF. 

 

 

the smaller number of iterations of ours. Of course, the number of 

iteration of ZF is just 1 because it does not need any iteration. 

 

6.2 Performance via the Number of Antennas 

As the third experiment, we compared the performance of ZF, 

original-ELR-aided ZF, and ours with different number of antennas 

at SNR=30db. The result is shown in Fig. 8 and Fig. 9. The horizontal 

axes of both are the number of antennas, which is the same in a 

transmitter and a receiver. The vertical axis indicates BER in Fig. 8 

and the number of iterations in Fig. 9. With 100 antennas for each of 

transmitter and receiver, the number of iterations of ours is 63.3% less 

than that of original even though the BER of ours is about 35.4% 

inferior to the other. 

 

7. Conclusion 

 

 ZF method is a linear detection method but the BER is not so 

good. In order to improve the accuracy of linear detection, LR-aided 

linear detection methods is good solution. ELR-aided linear detection 

is one of them, and it is suit for massive MIMO systems because of 

its large number of antennas. However, ELR algorithm make the 

channel matrix more orthogonal than necessary, so we proposed 
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Fig. 8  BER via the number of antennas for ZF and LR-aided ZF. 

 

 
Fig. 9  The number of iteration via the number of antennas for ZF and 

LR-aided ZF. 

 

improved ELR. The improvement point is just a change of the 

function in the algorithm. 

  We conducted some experiments in section 7, and we showed 

that our algorithm could reduce the average number of iterations in 

the process to detect a set of signals about a half of original although 

the BER of ours is not so inferior to that of original. It means that ours 

algorithm is more efficiency than original ELR. However, the 

threshold was determined experimentally in this paper, so we should 

determine the threshold 𝛼 logically. 
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