NO2共存下における室温作動型固体電解質CO2センサのガス選択性の改善

小畑 賢次・石井 秀典*・松嶋 茂憲

Improvement of Gas Selectivity of Solid-State Electrolyte-Based CO₂ Sensor Operative at Room Temperature in the Ambient Atmosphere Containing NO₂

Kenji OBATA, Shusuke ISHII and Shigenori MATSUSHIMA

Abstract

Potentiometric NASICON (Na₃Zr₂Si₂PO₁₂)-based CO₂ sensors were fabricated by using indium tin oxide (ITO) and Li₂CO₃-BaCO₃

(1:2 in molar ratio) or Li_2CO_3 -In₂O₃ (1:1, 2:1, 3:1 or 4:1 in molar ratio) auxiliary phase as a sensing electrode. Those CO₂ sensing properties were examined under 30 % relative humidity (RH) at 30 °C. The EMFs of the sensors were linear to the logarithm of CO₂ concentration in the range of 250 to 2500 ppm. When CO₂ concentration increased in the range of 250 to 2500 ppm, each Δ EMF of the CO₂ sensor was estimated to be about 30 mV. By the change in NO₂ concentration in the range of 2 to 7 ppm, although Li₂CO₃-BaCO₃ or Li₂CO₃-In₂O₃ (1:1 or 2:1)-attached sensors were fluctuated, Li₂CO₃-In₂O₃ (3:1 or 4:1)-attached sensors were not affected. Among the sensors examined, a Li₂CO₃-In₂O₃ (3:1)-attached sensor showed the highest sensitivity to CO₂ in the ambient atmosphere containing NO₂ (2-7 ppm).

Keywords: NASICON, CO2 sensor, ITO, Li2CO3, Operative at room temperature

1. 緒言

最近、固体電解質であるNASICON (Na₃Zr₂Si₂PO₁₂: Na⁺ 導 電体) に対して炭酸塩補助相 (Li2CO3など) と金属酸化物電 極 (ITO: indium tin oxide) を同時に接合すると、室温でも CO2を検知できることが報告された¹⁻⁴⁾。しかしながら、この CO2センサは、NO2が共存するとCO2濃度の正確な決定がで きない⁵⁾。これは、炭酸塩がNO₂と反応し、硝酸塩や亜硝酸 塩を生じ易いためである。最近、Al³⁺導電体である (Al_{0.2}Zr_{0.8})_{20/19}Nb(PO₄)₃とO²⁻導電体である安定化ジルコニア (YSZ) を組合せた固体電解質に、金属酸化物と複合化させ た希土類オキシ炭酸塩系補助相を用いたCO2センサが、作動 温度600 ℃においてNO (0 - 600 ppm) が共存する環境中で も良好なCO2応答性を示すことが報告された⁶。これは、NO2 と反応し難い複合炭酸塩を用いることで、高いCO2選択性が 得られるためである。我々も金属酸化物と複合化した炭酸 塩を使用することで、室温作動型固体電解質センサの共存 ガス(NO₂)の影響を改善できると考えた。

本研究では、NO₂の影響を受け難い室温作動型固体電解質 CO₂センサを開発するために、金属酸化物(In₂O₃)と炭酸塩 (Li₂CO₃)を複合化した補助相を用いた室温作動型NASICON 系センサを作製し、NO₂濃度変化とセンサ出力との関係を調 べた。

2. ガス検知原理

固体電解質に金属酸化物と補助相を接合したセンサ素子 は、ガスと補助相間の電気化学的平衡状態の変化から、被 検ガス濃度を検出している。例えば、ITOと炭酸塩補助相 (Li₂CO₃など)を組合せたNASICONセンサの電気化学セル は、次式で与えられる⁴⁾。

Au | NASICON | carbonate auxiliary phase, ITO (1)

このセンサでは、ITOのような金属酸化物表面の物理吸着 水が、溶媒のように振る舞い、(2)式に記すように、雰囲気 中に含まれる被検ガス (CO₂)を検知電極反応に含まれる化 学イオン種 (CO₃²⁻)に変換する。さらに、平衡状態における 化学イオン種(CO₃²⁻)と補助相(Li₂CO₃)との間の電気化学反 応は (3)式で与えられ、全検知反応は (4)式で表される。

$$CO_{2} + 1/2O_{2} + 2e^{2} = CO_{3}^{2}$$
(2)
2Li⁺ + CO_{3}^{2-} = Li_{2}CO_{3}(3)

 $2Li^{+} + CO_{2} + 1/2O_{2} + 2e^{-} = Li_{2}CO_{3}$ (4)

一方、Au電極上の参照極反応は、次式で与えられる。

$$2Na^{+} + 1/2O_2 + 2e^{-} = Na_2O$$
 (in NASICON) (5)

Nernst式を用いると、反応式 (4), (5) における電極電位は、 各々(6), (7)式で与えられる。

$$\begin{split} E_1 &= C_1 + (RT/n_1F) \ln (a_{Li+}^{2} \cdot P_{CO2} \cdot P_{O2}^{1/2} / a_{Li2CO3}) \quad (6) \\ E_2 &= C_2 + (RT/n_2F) \ln (a_{Na+}^{2} \cdot P_{O2}^{1/2} / a_{Na2O}) \quad (7) \end{split}$$

ここで、 $n_1 \ge n_2$ は各々 $CO_2 \ge O_2$ の電極反応に伴う電子数, P は分圧, Rは気体定数, Tは絶対温度, Fはファラデー定数, C は電極構成(固体電解質,補助相など)で決定される標準電 極電位, aは各々 Na^+ , Li⁺, Li₂CO₃, NASICON中の Na_2 Oの活量 である。観測される起電力(EMF: electromotive force)は、検 知極と参照極との間の電位差として与えられる。仮に、 P_{O2} 及び各化学種の活量が測定中不変ならば、観測されるセン サ起電力(E_{cell})は、(8)式で与えられる。ただし、反応電 子数(n)は、反応式(4)と(5)に示すように、 $n_1 = n_2 = 2$ である。

^{*} 北九州工業高等専門学校 物質化学工学専攻

 $E_{cell} = C_3 + (RT/2F) \cdot \ln P_{CO2}$

(8)

対象ガス濃度が、P'からP''まで変化する時の理論的な起電 力変化(ΔEMF_{co2})は (9) 式で表わされる。

 $\Delta EMF_{CO2} = (RT/2F) \cdot \ln(P^{\prime\prime}_{CO2}/P^{\prime}_{CO2})$ (9)

例えば、作動温度30°CにおいてNernst式を適用すると、250 \sim 2500ppmまでのCO₂濃度変化に対応する Δ EMF_{CO2}は、30.1 mVであると見積もられる。

3. 実験方法

3.1 試料の調製

NASICON (Na₃Zr₂Si₂PO₁₂)の出発原料には、Si(OC₂H₅)₄, Zr(OC₄H₉)₄, PO(C₄H₉)₃, NaOC₂H₅を使用し、ゾルゲル法より合成した⁴⁾。ITO (10 atm.% Sn-doped In₂O₃)粉体は、出発原料に InCl₃とSnCl₄を使用し、沈殿法により調製した⁴⁾。二種類の炭酸塩を複合化した補助相(Li₂CO₃-BaCO₃)は、Li₂CO₃粉末 とBaCO₃粉末を1:2のモル比で混合し、空気中750 °Cで10分間 熱処理することで準備した。炭酸塩と金属酸化物を複合化 した補助相(Li₂CO₃-In₂O₃)は、Li₂CO₃粉末とIn₂O₃粉末を1:1, 2:1, 3:1, 4:1のモル比で混合し、空気中600 °Cで1時間熱処理 することで準備した。

3.2 センサ素子の作製及びガス検知特性測定

本研究では、作製が容易であり、参照極が被検ガスの影響 を受け難い一端封止型のセンサ素子を作製した(Fig. 1)。参 照極は、固体電解質ディスクの表面に Au ペーストを塗布し て、800 °C で 2 時間処理することで作製した。検知極は、ペ ースト状にした 複合補助相(Li₂CO₃-BaCO₃ あるいは Li₂CO₃-In₂O₃)粉末と ITO 粉末を塗布して、500 °C, 30 分間処 理することでもう一方の固体電解質表面に接合した。また、 参照極側の Au 電極は、他ガスの影響を避けるため無機接着 剤で被覆した。本研究では、補助相として Li₂CO₃-BaCO₃を用 いたセンサ素子を LB, モル比 1:1, 1:2, 1:3, 1:4 で複合化した Li₂CO₃ と In₂O₃ を用いたセンサ素子を LI-11, LI-21, LI-31, LI-41 と称した。

Fig. 1 Schematic drawing of CO₂ sensor attached with ITO and auxiliary phase.

3.3 ガス検知特性の評価方法

センサのガス検知特性は、Fig. 2に示すように、30°Cで電 気炉付のガスフロー装置内で測定された。人体への健康被 害における許容濃度は、CO₂では1000ppm, NO₂では3ppmと定 められているため、CO₂濃度範囲は250~2500ppm, NO₂濃度範 囲は2~7ppmで評価した。air, CO₂, NO₂, H₂Oから成る被検ガ スは、air 希釈の5000ppmCO₂と10ppmNO₂を乾燥・湿潤air で希釈することで準備された。湿潤airは、乾燥airをフラス コ内の水を通過させることで準備された。被検ガスは、0.1 dm³/minの速度で検知電極上に流通させた。センサの起電力 (EMF)は、デジタルエレクトロメーターを用いて測定さ れた。本実験では、30%RH (relative humidity)における 250ppmCO₂あるいは2ppmNO₂に対するEMFを測定すること で、センサの基準電位を定義した。

Fig. 2 Experimental set-up for measuring sensor response.

4. 結果及び考察

4.1 Li₂CO₃-BaCO₃を接合したセンサ

Fig. 3には、Li₂CO₃-BaCO₃を接合した(LB)センサのCO₂ 濃度変化に対する起電力(EMF)の応答曲線及びCO₂濃度と EMFとの関係を示している。CO₂検知特性は、CO₂濃度範囲 250~2500ppm, 30°C, 30% RHにおいて評価した。**Fig. 3-(a)** に示すように、250から500 ppmまでCO₂濃度を増加させると、 EMFは約 8.5 mV増大し、90%応答時間は約5分と見積もられ た。250~2500 ppmまでのCO₂濃度変化に対して、EMFは約 30.2 mV増大した。**Fig. 3-(b)** に示すように、LBセンサ素子 のEMFは、CO₂濃度の対数に比例し、本センサ素子はNernst 型応答を示した。ここで、ネルンスト式(9)を適用すると、 センサのn値はn = 2.00と見積もられた。この結果は、理論値 とよく一致した。

次に、LBセンサについて、NO2濃度変化(2~7ppm)の影響を調べた。Fig.4 には、30°C, 30%RHにおけるLBセンサのEMFとNO2 ガス濃度との関係を示している。Fig.4 に示すように、NO2濃度 を2~7ppmまで増加させると、EMFは29.0mV増大した。このEMF の増大は、250ppmから2300ppmまでのCO2濃度の増加に相当する。 この結果は、LBセンサは、雰囲気中に共存するNO2の影響は 大きいことがわかった。

4.2 Li₂CO₃-In₂O₃補助相の調製

センサ出力であるEMFは、式(6)に記したように補助物 質(Li₂CO₃など)の熱化学的安定性に強く依存する。そこで、 NO₂の影響を低減するために、検知電極材料として、Li₂CO₃ と金属酸化物を複合化した補助相を用いてセンサを作製し た。In₂O₃を接合したCO₂センサ⁵⁾が、室温において良好なガ ス検知特性を示すことが報告されていることから、本研究 ではLi₂CO₃とIn₂O₃を複合化することとした。

Fig. 3 CO₂ sensing properties for a Li₂CO₃-BaCO₃ attached (LB) sensor: (a) EMF response transients to stepwise changing CO₂ concentration and (b) relationship between EMF values and CO₂ concentration under 30 %RH at 30 °C.

Fig. 4 Relationship between NO₂ concentration and the EMF for a Li₂CO₃-BaCO₃-attached (LB) sensor under 30 % RH at 30 °C.

複合化温度を決定するために、炭酸塩と金属酸化物を1:1, 2:1,3:1,4:1のモル比で混合した粉末について熱重量・示差 熱分析(TG-DTA)を行なった(Fig.5)。その結果、600℃ 以上の高温で重量減少(実線)と770℃付近で吸熱過程(点 線)が観測された。LiInO₂は、Li₂CO₃とIn₂O₃の混合粉末を520 ℃で22日間熱処理すると得られることから⁷⁰、500℃以上で 観測された重量減少は、Li₂CO₃とIn₂O₃との反応によるLiInO₂ と CO₂の生成に相当すると予想される。

Fig. 5 TG-DTA curves of a mixture of Li_2CO_3 and In_2O_3 : (a) 1:1, (b) 2:1, (c) 3:1 or (d) 4:1 in molar ratio.

複合化に適した熱処理条件を決定するために、 Li₂CO₃-In₂O₃補助相は、500~650 °Cの温度範囲で加熱処理し て、XRD測定により結晶構造変化を調べた。Fig. 6 には、 種々の条件で熱処理した複合化炭酸塩(Li₂CO₃-In₂O₃)に関 するXRDパターンを示している。600 °C以上でLiInO₂相が生 成しており、650 °C以上でIn₂O₃相が消失していることがわか る。この結果は、TG-DTAの結果を支持している。LiInO₂は、 CO₂と電気化学的反応を生じないため、補助相として機能し ない。CO₂検知には炭酸塩が必要不可欠であるため、In₂O₃, Li₂CO₃, LiInO₂ が混在する600 °Cで1時間焼成した複合炭酸 塩を使用した。

Fig. 6 XRD patterns of a mixture of Li_2CO_3 and In_2O_3 in various molar ratios after heated at the temperature between 500 and 650 °C in air for 1 h: (a) 1:1, (b) 2:1, (c) 3:1 or (d) 4:1 in molar ratio.

4.3 Li₂CO₃-In₂O₃を接合したセンサ

Fig. 7には、30°C, 30% RHにおけるLi₂CO₃-In₂O₃を接合したセンサのCO₂濃度とEMFとの関係を示している。**Fig.7**に示すように、各センサ素子のEMFは、いずれもCO₂濃度の対数に比例した。Li₂CO₃-In₂O₃(1:1, 2:1, 3:1 or 4:1)補助相を接合した(LI-11, LI-21, LI-31, LI-41)センサの Δ EMFは、順に30.9, 31.4, 30.6, 30.4 mVであった。さらに、ネルンスト式より、LI-11, LI-21, LI-31, LI-41 センサのn値を求めると、順にn = 1.95, 1.91, 1.97, 1.98, 1.99 と見積もられた。

Fig. 8には、LI-31 センサのCO2濃度変化に対するEMFの 応答曲線を示している。CO2検知特性は、CO2濃度範囲250 ~2500ppm, 30 °C, 30% RHにおいて評価した。Fig. 8 に示す ように、250から2500 ppmまでCO2濃度を増加させると、EMF は約 30.9 mV増大し、90%応答時間は約7分と見積もられた。

Fig. 7 Relationship between CO₂ concentration and EMFs for Li₂CO₃-In₂O₃ and Li₂CO₃-BaCO₃ -attached sensors under 30 % RH at 30 °C.

続けて、各センサ素子について、NO2濃度変化(2~7ppm)の影 響を調べた。Fig.9 には、30 ℃, 30%RHでの各センサ素子におけ るNO2ガス濃度とEMFとの関係を示している。LI-11, LI-21, LB センサでは、NO2濃度が増加するとEMFも増大したが、LI-31, LI-41 センサでは、NO2濃度が増加しても、EMFはほとんど増大 しなかった。 Fig. 10 では、30 °C, 30%RHでの各センサ素子におけるCO₂感 度とNO₂感度を比較している。ここで、NO₂感度は、2~7ppmの NO₂濃度変化に対するEMFの増大量(Δ EMF_{NO2})で表した。補 助相を複合化する前のセンサ(LBセンサ)と比較すると、NO₂ の影響を90%低減できており、CO₂選択性を大幅に改善できてい ることがわかる。2~7ppmまでのNO₂濃度変化によるEMFの増大 は、250ppmから335ppmまでのCO₂濃度の増加に相当する。この ことは、室温作動型NASICON系センサにおいて、炭酸塩と金属 酸化物を複合化した補助相を用いることは、NO₂共存下における CO₂選択性の改善に大変有効であることを示唆している。これは、 炭酸塩が単独で用いられるよりも、金属酸化物と複合化するこ とで、NO₂ガスとの反応が抑制されたためと考えられる。金属酸 化物との複合化の効果については、電子顕微鏡による補助相の 形態観測や元素分析を実施することで明らかにしていく予定で ある。

Fig. 9 Cross-sensitivities to NO₂ under 30 % RH at 30 °C for Li₂CO₃-In₂O₃ (1:1, 2:1, 3:1 or 4:1) and Li₂CO₃-BaCO₃ (2:1)-attached sensors.

Fig. 10 Comparison of $\Delta EMF_{\rm NO2}$ under 30 % RH at 30 $^{\circ}C$ for $Li_2CO_3\text{-}In_2O_3$ and $Li_2CO_3\text{-}BaCO_3$ -attached sensors.

5. 結論

本研究では、室温作動型NASICON系CO₂センサにおいて、 NO₂共存下でのCO₂選択性の改善を試みた。本研究で得られ た知見を以下に列挙する。

- (1) Li₂CO₃-BaCO₃を接合した(LB)センサは、室温付近でも 良好なCO₂検知能を示したが、共存するNO₂の影響を強く受け ることがわかった。
- Li₂CO₃-In₂O₃ を接合したセンサについて、CO₂検知特性を 調べたところ、各EMFはCO₂濃度の対数に比例した。
- (3) 試験したセンサの中では、Li₂CO₃-In₂O₃ (3:1) を接合した
 (LI-31) センサが、NO₂共存下において最も高い CO₂ 選 択性を示した。

<参考文献>

- S. Bredikhin, J. Liu and W. Weppner, Solid ionic conductor/semiconductor junctions for chemical sensors, *Appl. Phys.*, A57, (1993) 37-43.
- [2] S. Kumazawa, N. Miura and N. Yamazoe, Solid electrolyte CO₂ sensor operative at low temperature, in: *Abstracts of 49 th ISE Meeting*, (1998) 903.
- [3] K. Obata, S. Kumazawa, K. Shimanoe, N. Miura and N. Yamazoe, Potentiometoric sensor based on NASICON and In_2O_3 for detection of CO_2 at room temperature modification with foreign substances, *Sensor Actuat. B-Chem.*, 76, 639-643 (2001).
- [4] K. Obata, S. Motohi and S. Matsushima, NO₂ and CO₂ sensing properties of LISICON-based sensor operative at room temperature, *Sensor Mater.*, 24 (2012) 43-56.
- [5] 小畑賢次, 松嶋茂憲, 西日本大会2009年 日本化学会西日本大会 講演要旨集, 2C-15, P155 (2009).
- [6] S. Tamura, I. Hasegawa, N. Imanaka, T. Maekawa, T. Tsumiishi, K. Suzuki, H. Ishikawa, A. Ikeshima, Y. Kawabata, N. Sakita and G. Adachi, Cabon dioxide gas sensor based on trivalent cation and divalent oxide anion conducting solids with rare earth oxycarbonates based auxiliary electrode, *Sensor Actuat. B-Chem.* 108 (2005) 359-363.

(2012年11月12日 受理)