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Uniform extending JOEEIC DUWT

On uniform extending modules

Yosuke Kuratomi

A module M is said to be (u-)eztending or (u-)CS if, for any (uniform) submodule X of M, there exist a direct
summand X* of M such that X is essential in X*. An extending property, along with lifting property of modules

have been studied by many researchers since 1980. However, the following fundermental problem remain as open

problems:

When is a direct sum of CS (lifting) modules CS (lifting) ?

In this paper, we consider the open problem ‘When is an infinite direct sum of uniform modules CS ?’.
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1. Introduction

Throughout this paper R is a ring with identity and
all modules considered are unitary right R-modules.

A submodule X of a module M is said to be essential
in M, if X NY # 0 for any non-zero submodule Y of M
and we write X C. M in this case. Y is called a closed
submodule in M or a closed submodule of M if Y has no
proper essential extensions inside M. Let A C B C M.
B is said to be closure of A in M if B is closed in M and
A C. B. K <g N means that K is a direct summand
of N.

The following is well known:

Proposition 1.1. Let A,B,C be modules with
ACBCC. Then A Ce B and B C. C if and only
fAC.C

Let £(M) be the family of all submodules of module
M and let A be a class which is closed under submod-
ules, essential extentions and isomorphic images. For
example, a family of uniform modules, or modules with
the finite uniform dimension, or nonsingular modules is
closed under submodules, essential extentions and iso-
morphic images.

Let M = M1 @ M; and let ¢ : M1 — M3 be a homo-
morphism. Put (M; % M) = {mi—p(m1) | m1 € Ma}.
Then this is a submodule of M which is called the graph
with respect to M, *, M. Note that M = My @ M, =
(M1 % M,) ® M.

Let {M; | i € I} be a family of modules. The direct
sum decomposition M = ®;M; is said to be ezchange-
able if, for any direct summand X of M, there exists

M; C M; (i € T) such that M = X & (&rM;). A module
M is said to have the (finite) internal ezchange property
if, any (finite) direct sum decomposition M = @1 M; is
exchangeable.

Lemma 1.2. (cf (8, Theorem 2.15)’ (7, Proposition 2.5) ) Let
M = A® B. Then M has the finite internal exchange
property if and only if A and B have the finite internal
exchange property and M = A @ B is exchangeable.

A module M is said to be (A-)eztending if, for any
submodule X of M (with X € A), there exists a direct
summand N of M such that X is essential in N. In
particular, A module M is said to be u-eztending if, M
is A-extending for a family A of uniform modules.

Let A and B be modules. A is said to be (A-
)essentially B-injective if, for any submodule X of B
(with X € A) and any homomorphism f : X — A with
ker f C. X, there exists a homomorphism g : B — A
such that g|x = f.

By the quite similar proof of » PP-16-17) gpd (5, Theorem 1.7)

we can obtain the following:

Proposition 1.8. Let A, B, A, and By (e € I) be

modules. Then

(1) If B is (A-)essentially A-injective if and only if
B is (A-)essentially K-injective for any submod-
ule K of A (with K € A).

(2) Let B be an (A-)estending module. Then B
is (A-)essentially A-injective if and only if B is
(A-)essentially bR-injective for any b € B (with
bR A). '

(8) TII; Ba is (A-)essentially A-injective if and only
if B is (A-)essentially A-injective for any o € I.
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(4) Let Ay (o € I) and B be modules. Then B is
(A-)essentially @1 Aq-injective if and only if B is
(A-)essentially Ay-injective for any a € I.

Proposition 1.4. Let A, (o € I) and B be modules.
Then ®rAa is (A-)essentially B-injective if and only if
Aq is (A-)essentially B-injective for any o € I and the
following condition (A3) ((A%)) holds:

(A%) : For every choice of b € B and a; € Aa,; for
distinct o; € I (i € N) such that (0 : a;) 2 (0 : b)
and N2 ker p; Ce bR for the canonical homomorphism
i : bR — aiR (br — a;r), the ascending sequence
Ni>x(0 : a;) (k € N) becomes stationary.

(A%) : For every choice of b € B’ for some submodule
B’ € A of B and a; € Aa,; for distinct a; € I (i € N)
such that (0: a;) D (0:b) and N2, ker p; C. bR for the
canonical homomorphism @i : bR — a;R (br — air),
the ascending sequence N;>K(0 : a;) (k € N) becomes
stationary.

A module M is said to be (A-)N-ojective if, for any
submodule X of N (with X € 4) and any homo-
morphism f : X — M, there exist decompositions
N = N1 ® N2, M = Mi; & M, a homomorphism
g1 : N1 — M; and a monomorphism gz : M2 — N2
satisfying the following condition (*):

(*) For any z € X, we express z and f(z) in N =
Ni® Ny, and M = M1 @ My as £ = ni1 + n2 and
f(z) = m1 + ma, respectively. Then gi(ni) = m1 and
g2(m2) = na.

For undefined terminologies, the reader is referred
to®, @ ) and ®

2.1 Main Results

In this section, we consider the case that A is a class
of uniform modules. First we define the following:

Definition Let A be a class of uniform modules. A
module M is said to be u-eztending if M is A-extending.
A module M is said to be u-N-ojective (u-essentially
N-injective) if M is A-N-ojective (A-essentially N-

injective).

Proposition 2.1. Let N be a u-extending mod-
ule. If M is u-N"-ojective for any indecomposable direct
summand N’ of N, then M is u-essentially N-injective.

Proof. Let X be a uniform submodule of N and let
f be a homomorphism from X to M with ker f Ce X
(that is, ker f # 0). Since N is u-extending, there exists
a direct decomposition N = N’ @ N” with X C. N’.
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As M is u-N'-ojective, we see that either there exists
a homomorphism g : N’ — M with g|x = f or there
exists a monomorphism h : M — N’ with h~}|x = f.
Since ker f # 0 and h is a monomorphism with
h~Y|x = f, there does not exist h : M — N’. Hence
there exists a homomorphism g : N’ — M with g|x = f.
Define g* : N = N' @ N’ — M by g*(n' +n") = g(n’),
where n’ € N’ and n” € N”. Then f is extend to g*. O

Proposition 2.2. Let My,--- , M, be u-eztending
modules with the finite internal exchange property and
put P=M1®---® M,,. Assume that P is u-extending
and the decompositon P = M1 @ --- & M, is exchange-
able. Then
(1) Any direct summand of P is u-extending and the
decomposition P = A1®-- - ©A,®B1®---® By, is
ezchangeable for any decomposition M; = A; ® B;
(i=1,---,n).

(2) The decomposition Q = A1 @ -+ & An is ez-
changeable for any direct summand A; of M; (i =
1,--+,n).

f(3, Lemma 2.13)

Proof. (1) By a similar proof o

(2) Let M; = A;® B; (i=1,---,n) and let X be a
direct summand of @ = A1 @& --- ® An. By (1), there
exists a decomposition P = X & (&7, 4;) & (®i=1B;)
such that X is an essential submodule of X*. Thus we
get @ = X © (97141 ®[(@7=1Bi)NQ) = X & (§i=147).
Thus the decomposition Q = A} @ - -- @ AL, is exchange-
able. m]

Theorem 2.3. Let Mi, M2 be u-extending mod-
ules with the finite internal exchange property and put
M = M; & M,. Then the following conditions are equiv-
alent:

(1) M is u-estending with the finite internal ex-
change property.

(2) M is u-extending and the decomposition M =
M; & M- is exchangeable.

(3) Mj is u-Mj-ojective for any direct summand M;
of M; and any uniform direct summand M} of M;
(i #3).

Proof. (1) & (2) follows by Lemma 1.2.

(2) = (3) : By Proposition 2.2 (2), we may prove the
following :

“Let M; be a uniform module and Mz be a u-
extending module and put M = My & M. If M is u-
extending and the decomposition M7 @ M, is exchange-
able, then M is u-M;i-ojective.”

Let X be a uniform submodule of M; and let f :
X — M, be a homomorphism. By the assumption,
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for (X 4, M,) C M, there exists a decomposition
M = Z® M! & Mj such that (X 5 M) C. Z and
M} C M;. Put M = (Z® M}') N M; (i # j) and then
M; = M} & M (i=1,2). Hence we see

M=M&MeM &M, =Zo M &M,

and so M{ & Mj ~ wz(Mi) & wz(M3) = Z, where
7z : M =2Z&M{ ® M) — Z is the projection. Since
(X 4 M) ~ X is uniform and (X 5 Mp) C. Z, Z is
uniform and hence Mj = 0 or M4 = 0.

() In the case of Mj = 0, we see M = My & M1 @
MY = Z&® M; & MY. Let z € Z and express z in
M= M,®& M &M} as z = mh +m1 +mj. By
z—mi1=mh+mY¥ € (Z® M{)N Mz = My, we see
z = mh+mi. As Mj ~ wz(M}) = Z, mp = 0 im-
plies my = 0. By (X EA M) Ce Z, m1 = 0 im-
plies z = mj = 0. Thus we can define a monomor-
phism g : M; — M by g(pu;(2)) = pay(2), Where
Py - M= M®M &My — Mj and pry : M =
M}, & M; & My — M are the projections. Hence
(X 5 Mz) C. Z = (M} % M) and so g7*|x = f.

(IT) In the case of M3 = 0, since My = Mj is uniform,
we see

M=M &M =2 M.

Hence we can define a homomorphism h : M1 — M2 by
h(pn; (2)) = P, (2), where z € Z and pu; : M — M, is
the projections (i = 1,2). Then h|x = f.

By (1), (IT), M> is u-Mi-ojective.

(3) = (2) : Let X be a uniform submodule of M and
put X; = M;NX (i=1,2). Let pr; : M — M; be the
projections (i = 1, 2).

(a) In the case of X3 # 0, since X is uniform, we
see that X; Ce X and X, = 0. Since X ~ pa (X)
is uniform and M; is u-extending, there exists a de-
composition My = Mj @& M such that par, (X) Ce
M{. As X2 = 0, we can define a homomorphism
f ooy (X) — pay(X) by f(pm,(2)) = pap(z). Then
ker f = X1 Ce par, (X). By Proposition 2.1 and 1.3 (1),
M, is u-essentially Mji-injective and hence there exists
a homomorphism f* : Mi; — M, with Flon, 00 = -
Thus we see

M= (M5 M) e MY @ M,
and
X = (pa (X) L pay (X)) Ce (03 T 113).

(b) In the case of X2 # 0. By the same argument of
(a), we obtain that M = (Mj — M) & My & M;' and
X = {pr (X) — paay (X)) Ce (M2 — M),
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(c) In the case of X3 = X2 = 0, for any = € X, express
zin M = M1 ®M; as £ = mi+mz. Then m; = 0 implies
m; =0 (i,j = 1,2). Thus we can define an isomorphism
fi oy (X) = pumy(X) by f(pmy () = prp(z). As
X =~ pp, (X) is uniform (¢ = 1,2), there exists a decom-
position M; = M ® M} with pa, (X) Ce M (i =1,2).
Since M3} is u-Mj-ojective and M; is uniform, there ex-
ists a monomorphism g1 : M{ — Mj with g1]p,, (x) = f
or there exists a monomorphism gz : M — M with
92_1|pM1(X) = f. Thus we see

M= (M & Mj) e Mj & M’ & My

and
X Ce (M 5 Mj).

By (a), (b) and (c), M is u-extending and the decom-
position M = M; @ M, is exchangeable. O

Now we consider that a finite direct sum of u-
extending modules.

Theorem 2.4. Let M, -+ M, be u-extending mod-
ules with the finite internal exchange property and put
M=M @---®M,. Then the following conditions are
equivalent:

(1) M is u-extending with the finite internal ez-

change property.

(2) M is u-extending and the decomposition M =

M @& M, is exchangeable.
(8) M is u-Mj-ojective for any direct summand M;
of M; and any uniform direct summand M} of M;
(i #3).
Proof. By Lemma 1.2, (1) < (2) holds.

(2) = (3) follows by Proposition 2.2 and Theorem 2.3.

(3) = (2) In the case n = 3. Let X C M and put
Xi=M;nX (i=1,2,3).

(I) If X; # 0 for some ¢ € {1,2,3}, then X; C. X.
Let p; : M = M; & M2 & M3z — M,; be the projec-
tion (¢ = 1,2,3). Then we can define a homomorphism
f i pi(X) — @5 M; by f(pi(x)) = (1m — pi)(z). Since
pi(X) ~ X is uniform, there exists a decomposition
M, = M| & M} with pi(X) C. M. By 0 # X; =
ker f C pi(X), we see ker f C. pi(X). By Proposition
2.1 and 1.3, @;%:M; is u-essentially Mj-injective and
hence there exists a homomorphism f* : M] — @®;x:M;
with f*|p,(x) = f. Thus we see

M= (M 5 0uM;) ® M & (@;2:M;)
and

X = (pi(X) & (o = pi)(X)) Ce (M] D @05).
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(II) Let X; = 0 for any ¢ € {1,2,3}. By X5 =0, we
can define & : pa ey (X) — p3(X) by a(prvyem, (7)) =
p3(z), where par, @n, : M = Mi®Ma®Ms — M1®M, is
the projection. Thus X = (par;em, (X) = p3(X)). By
Theorem 2.3, M1 @ M is u-extending and the decom-
position M; @ M, is exchangeable. As X ~ par, g, (X)
is uniform, there exists a decomposition M; @ M, =
Y & M{ ® M; such that prrema(X) Ce Y and M} C
M;. Since Y is uniform, M1 @ M2 = Y @ M] © M;
(4,7 = 1,2) and so we see Y ~ M < ©M;. Hence
M3 is u-Y-ojective. Thus there exists a homomorphism
g:Y — Ms with g|pM1eM2(X) = f or there exist a direct
summand M3 of M3 and a monomorphism h: M§ — Y
With h ™5, @, (x) = f- Hence we see that

M= 3 M)oMeM;&Ms; and X C. (Y 5 Ms)
or
M= (M} 2 Y)oMi@M®M: and X C. (Mj B Y).

Therefore the statement holds for n = 3.
By the same argument above, we see that the state-
ment holds for any n. 0O

Theorem 2.5. Let {M. | a € A} be a family of u-
extending modules with the finite internal exchange prop-
erty and put P = @aMq. Then the following conditions
are equivalent:

(1)P is u-extending and the decomposition P =
SrM,.
(2) (a) My, is u-Mp-ojective for any direct summand
M, of M, and any uniform direct summand
Mp of Mg (a # ).
(b) (A3) holds for all M, and {Mg| B # a,8 € A}.

Proof. (1) = (2) : (a) follows from Proposition 2.2 and
Theorem 2.3.

(b) : By Proposition 1.4, we may show that “
@Da—{py Mo is u-essentially Mp-injective ”.

Let X be a uniform submodule of Mg and let f : X —
®4—1p} Mo be a homomorphism with ker f C. X. Since
Mp is u-extending, there exists a decomposition Mg =
Ap ® Bg with X C. Aﬁ‘ Put N =430 (@A_{ﬁ}Ma).
Then N is u-extending and the decomposition N = Ag®
(®a—{p M) is exchangeable by Proposition 2.2. Thus
there exists a decomposition N = Z® Ap @ (®a—(p3 Mz)
such that (X £ @a_(s3Ma) Ce Z, Ag = Ay & A} and
M, = M., ® M. Then we see

Z o~ 7T(Z) = Ag (&) (@A_{ﬁ}Mg),

where 71 @ N = [As & (Da—(sMs)] ® [4Af &
"~ (®a-(syMy)] — Af ® (®a—py ML) is the projection.
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Since Z is uniform and 0 # ker f C Z N Ag, we ob-
tain ®p_(pyMa = 0 and so N = Ag @ (Bar—(p3Ma) =
Z @ (da-{p} Ma). Hence we see

Z = (Ap > ®r—(py Ma),

where g : Ag = pag(Z) — (Iv —pag)(Z) is the canon-
ical homomorphism. Then we see g|lx = f and so
®a-(p) Mo is u-essentially Mp-injective.

(2) = (1) : Let X be a uniform submodule of P.
Let 0 # = € X. Then there exists a finite subset
F of A such that zR C ®&rM,;. By Theorem 2.4,
@®rM,; is u-extending and hence there exists a decom-
position @rM; = Y © My, & (®p—_{x}M:) such that
zR C. Y and My = My ® Mj/. By zR C. X and
Y Ce X, we can define a homomorphism f : py(X) —
M;®(©r— () M:)® (@-rMa) (pr(2) — (1p—py)(2)
with kerf = Y N X C. py(X), where py : P =
Y & My @ (®a—{x}Ma) — Y is the projection.

By Proposition 1.3, 1.4 and Theorem 2.3, Mj &
(®a—{x}Ma) is u-essentially Y-injective. Hence there
exists a homomorphism g : ¥ — M @& (®a—{x}Ma)
with g|py (x) = f. Thus we see

X = (py(X) L (1p — py)(X))
Ce (Y 2 My @ (®a—1xy Ma))
and

P=(Y % My ® (®a-(k} Ma)) © My @ (®a— (5} Ma).

Therefore P is u-extending and the decomposition P =
@®aM, is exchangeable. O

The following is due to Kado-Kuratomi-Oshiro ¢:

Lemma 2.6. Let {Us | @ € A} be a family of uni-
form modules and put P = ®aUs. Then the following
conditions are equivalent:

(1) P is extending with the finite internal ezchange
property. '
(2) P is extending and the decomposition P = @®pUa
s exchangeable.
(8) (a) Uy is Ug-ojective for any o # B € A.
(b) (A3) holds for all Uy and {Mp | B # a,B.€ A}.
(¢) There does not exzist an infinite sequence of
proper monomorphisms {fx : Ui, — Uy, 1 }een
with all iy, € A distinct.

P‘T’OOf. By (4, Theorem 2.5) X m]

Let N,M, (o € A) be uniform modules. Then we
see that “M, is N-ojective iff M, is u-N-ojective” and
“(Ag) iff (Af) for all N and {M, | @ € A}’. Thus, by
Theorem 2.5 and Lemma 2.6, we obtain the following:
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Theorem 2.7. Let {Ua | o € A} be a family of uni-
form modules and put P = @©pU,. Then the following
conditions are equivalent:

(1) P is extending with the finite internal exchange

property.

(2) P is extending and the decomposition P = ®&rUs

is exchangeable.

(8) (a) P is u-estending and the decomposition P =
@®AUs is ezchangeable.

(b) There does not exist an infinite sequence of
proper monomorphisms {fx : Ui, — Uiy, Jren
with all ix € A distinct.

(4) (a) P is u-extending and the decomposition P =
®AUx is exchangeable.

(b) P satisfies the condition (LSS).

(5) (a) P is u-extending and the decomposition P =
@®aUx is exchangeable.
(b) P = @®aU. satisfies the condition (IsTn).

Proof. By Theorem 2.5 and (4 Theorem 2.5 and 2.10) m]
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