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Properties of the finite sets consisted of the minimal vectors of the Barnes—Wall lattices
Hirotake KURTHARA

In 1959, Barnes and Wall constructed a family of lattices of rank 2¢, d > 0. The lattices are called the Barnes—Wall lattices and
denoted by BW,a4. It is well known that BW4 and BWg are isomorphic to the D4-lattice and the Eg-lattice, respectively, and from

this fact, the minimal vectors of these lattices are kissing configurations in the spheres S® and S7, respectively. From these points

of view, it is important to research the Barnes—Wall lattices.

In this paper, we give some properties of the minimal vectors of the Barnes—Wall lattices related to the theory of association

schemes.
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1 Introduction

Let S™~! be the unit sphere centered at the origin
in the m-dimensional Euclidean space R™, endowed
with the standard inner product z-y = Y . | z;y; for
T = (1’1,112, s 71"m)7y = (y17y27 s 7ym> eR™. We
recall about notion of lattices. Let {b1,ba,...,bm}
be a basis of R™. A lattice L in R™ is the Z-module
of {b1,ba,..., by}, Le,

L= {ia,b, [ a; GZ}.
i=1

For a lattice L, we denote p(L) = min{z - z|z €
L, z # 0} the minimal norm, and X = {z €
L|z-z = p(L)} the set of minimal vectors.

In a series of paper(® 5 6 7.15)  Barnes, Bolt,
Room and Wall investigated a family of lattices Ly
in R2". The lattice Ly satisfies that the dual lattice
L) :={z e R¥”|z-y € Z y € Ly} is geometri-
cally similar to Lg with Lq C L}, and if d # 3,
the automorphism groups Aut(Lg) = Aut(L}) are
subgroups of index 2 in the real Clifford group Cy.
When d = 3, Lz and Lj are two versions of the root
lattice Eg, and Aut(Ls) N Aut(L%) has index 270 in
Aut(L3) and index 2 in Cs.

The lattices Lg and L/, can be defined in terms

of an orthonormal basis bg,b1,. .., by, of R2* as
follows. Let V be a d-dimensional vector space F4
over the finite field 'y and index the basis elements

bo,b1,...,b0a_1 by the elements of V. For each
affine subspace U C V| let xy € R2* correspond
to the characteristic function of U: xy := Zfil €;b;,
where ¢; = 1 if 4 corresponds to an element of U and
¢; = 0 otherwise. Then Ly (resp. L)) is Z-spanned
by the set

{olld=t+/2ly 10 <1< d, U CV,dim=1},

where § = 1 for Ly and 6 = 0 for L/, We call
L, the Barnes-Wall lattice of rank 2¢. We also
use BWyq for the notion of Barnes—Wall lattice of
rank 2¢. Originally, the Barnes—Wall lattices are
constructed by Barnes and Wall in 19594). These
lattices are very interesting inasmuch they form one
of the very few infinite families of lattices for which
explicit computations can be made (density, kiss-
ing number, automorphism group etc.). It is well
known that BW4 = Ly and BWg = L3 are isomor-
phic to the Dy-root lattice and the Eg-root lattice,
respectively, and from this fact, the minimal vec-
tors of these lattices are kissing configurations in
the spheres S? and S7, respectively. Although they
do not provide, in dimension > 32, the best known
lattice packings. Also the Barnes—Wall lattices have
been studied in the theory of vertex operator alge-
bras. From these points of view, it is important to
research the Barnes—Wall lattices.
Extending scalars, we define the Z[v/2]-lattice

My = V2L} + Ly,

which we call the balanced Barnes—Wall lattice.

Remark 1.1 (Nebe-Rains-Sloane*)). For d > 1,
the lattice My is a tensor product:

My = Mg ®Z[\/§] M,
My @1z M1 ®gpy5) @1z M-

d times

In view of Remark 1.1, we have the following sim-
ple and apparently new construction for the Barnes—
Wall lattice Ly. Namely, Ly is the rational part
of the Z[v/2]-lattice M®?, where M; is the Z[v/2]-

lattice with Gram matrix ( \35 éﬁ ) For more

about this construction see Nebe-Rains—Sloane(*3).
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Some properties of minimal vectors of the Barnes—
Wall lattices have been investigated. We remark
that the minimal norm of the Barnes—Wall lattice
Lg is u(Lg) = 21921, Let X, be the set of minimal
vectors of the Barnes—-Wall lattice Ly, i.e., Xqg =
Xr,. Then it is known that the cardinality of X is
#Xy=12¢ H;j:l(? +1). Also the detail of the inner
product set of X is already known. Recall that, for
a nonempty finite set X C R™, the inner product set
of X is given by A(X) := {z - y|z,y € X}. Then
the inner product set of X4 forms

A(Xg) = {0,41, 42,422, .. +2ld/2l}

In this paper, we give some properties of the min-
imal vectors of the Barnes—Wall lattices of general
rank 2% related to the theory of association schemes.
The following are the main theorem in this paper.

Theorem 1.2. the set Xy of minimal vectors of the
Barnes—Wall lattice Ly has the structure of symmet-
ric association scheme with the partition of X4 x X4
related to the inner product set A(Xy).

The notion of association scheme is refer to Sec-
tion 2, and in Section 3, we give a proof of The-
orem 1.2. In section 4, we mention relations be-
tween designs and Xy. Finally, we give some re-
marks about the 16-dimensional Barnes—Wall lattice
Ly = BWgg in section 5.

2 Association scheme

We begin with a review of basic definitions concern-
ing association schemes. The reader is referred to
Bannai-Ito® for the background material.

Definition 2.1. A symmetric association scheme
X = (X, {R:}_y) of class v consists of a finite set
X and a set {R;}]_, of non-empty binary relations
on X satisfying:

(7') Ry = {(:IJ,SU) |'T € X}r
() {R:i}i_o is a partition of X X X,

(i) *R; = R; for each i € {0,1,...,7}, where ‘R; =
{(y,2)|(z,y) € Ri},

(iv) the numbers
#{ze X |(z,z) € R, and (z,y) € R;}

are constant whenever (z,y) € Ry, for each
i,j,k€{0,1,...,r}.

The numbers

#{z € X|(z,2) € R; and (z,y) € R;}
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are called the intersection numbers and denoted by
Py

The following example of association schemes is
related to finite group theory.

Example 2.2. Let G be a transitive permutation
group on  with the cardinality n. Let G acts on
Q x Q in such a way that g(z,y) = (9z,9y) for
z,y € Q, g € G. Let Ry, Ry,..., R, be the orbits
of G on Q x Q, where Ry = {(z,z) |z € X}. The
R;’s are called the orbitals of G on Q2 x Q. Then
X = (X, {R:}i_y) s an association scheme of class
7.

We remark that this association scheme may be
not usually symmetry. Nevertheless, if G has “nice”
properties, then the association scheme obtained
from G is symmetry.

Let Mx(R) denote the algebra of matrices over
the real field R with rows and columns indexed by
X. For i € {0,1,...,r}, the i-th adjacency matriz
A; in Mx(R) of X is defined by

1 if (z, y) € R;,
(Aay =4 b 20)
0 otherwise.

From the definition of association schemes, it follows
that

(A1) Ag =1, where I is the identity matrix,

(A2) Ag+ A1 +---+ A, = J, where J is the all-
one matrix, and A4; o A; = 6;;A; for 4,5 €
{0,1,...,7}, where o denotes the Hadamard
product, that is, the entry-wise matrix prod-
uct,

(A3) 'A; = A, for each i € {0,1,...,7},

(Ad) AiA; = YL _opi;Ag, for each i,j €
{0,1,...,7}.

The vector space & = Spang{Ag, 41,...,4,} with
a basis {4;}/_, forms a commutative algebra and
is called the Bose—Mesner algebra of X. It is well
known that 2 is semi-simple, hence 2 has a second
basis Eg, E1, ..., E, satisfying the following condi-
tions:

(E1) Eo = 77,
(EQ) E() + El +F Er =TI and EiEj = 5i,jEi,
(E3) 'B; = E; for each i € {0,1,...,7},

(E4) E;o Ej = 57 > k=0 4t Ex for some real num-
bers g ;, for each 1,5 € {0,1,...,r}.
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Then Ey, Eq, ..., E, are the primitive idempotents
of the Bose-Mesner algebra 2. The first eigenmatric
P = (Pi(j))j=o and the second eigenmatriz Q =
(Qi(4))} i=o of X are defined by

r . 1 < .
A= 3 ROy and Bi= 3 Q)45
j=0

=0

respectively.

We call X a P-polynomial scheme (or a metric
scheme) with respect to the ordering {4;}I_,, if for
each 1 € {0,1,...,r}, there exists a polynomial v;
of degree i, such that A; = v;(A41). Moreover X is
called a P-polynomial scheme with respect to A
if it has the P-polynomial property with respect
to some ordering Ag, A1, Aiy, Aiy, ..., Ai.. Dually,
X is called a @-polynomial scheme (or a cometric
scheme) with respect to the ordering {E;};_,, if for
each i € {0,1,...,r}, there exists a polynomial v}
of degree 1, such that | X|E; = v ((|X|E1)°), where,
for f € R[t] and M = (Mg y)zyex € Mx(R), we
define f(M°) = (f(Mz,y))s,yex. Moreover X is
called a Q-polynomial scheme with respect to F;
if it has the @-polynomial property with respect to
some ordering Ey, F1, E;i,, Eiy, ..., E;.. In fact, an
ordering of a @-polynomial association scheme with
respect to Fi is uniquely determined (cf. Kurihara—
Nozaki!?)). Tt is known that v; and v} form systems
of orthogonal polynomials(®.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 using group
theory.

In order to prove Theorem 1.2, we introduce the
notion of an automorphism group of the Barnes—
Wall lattice Ly. An automorphism group Aut(Lg)
of Ly is a subgroup of the orthogonal group O(2%, R)
that preserves L.

Fact 3.1 (Griess(!?). An automorphism group
Aut(Lq) of Lg is isomorphic to 217240+ (2d, 2).

Here are some fairly standard notations used for
particular extensions of groups: p* means an ele-
mentary abelian p-group; p®t?*"* means an iterated
group extension, with factors p?, p?, . .. (listed in up-
ward sense). The automorphism group has order

696729600 ford=3
2d2+d+1(2d —1) sz—ll(gT —1) otherwise,

In this paper, we do not mention more details
of the group 217290+ (2d,2). For more details of

247290+ (2d, 2), see Griess10), etc.
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Aut(Lg) also acts on the minimal vectors Xy of
the Barnes—Wall lattice Ly. Moreover X, is homo-
geneous for Aut(Lg), i.e.,

Fact 3.2 (Griess('9). Aut(Lg) acts on Xg transi-
tively.

Proof of Theorem 1.2. From Example 2.2 and
Fact 3.2, X4 has the structure of an associa-
tion scheme in terms of orbitals. In order to
complete the proof of Theorem 1.2, we have to
check the partition obtained from orbitals coin-
cides with the partition obtained from the inner
product set A(Xy). Let {R;}I_, be the orbitals
of Aut(Lg) on X4 x X4, and for o € A(Xy),
let Sq = {(z,y) € Xgx Xgq|z -y = a}. Now
we begin to prove that for each R;, there exists
a € A(Xy) such that R, = Sy. Since Aut(Lg)
is a subgroup of the orthogonal group O(2¢R),
for each ¢ € Aut(Ly) and z,y € X4 we have
(9z) - (gy) = = - y. Hence, for each R;, there exists
o € A(X,) such that R; € S,. On the other hand,
the number of the orbitals of Aut(Lg) on Xy x Xy
is 3+ 2|d/2|, we have #{R;} = #A(X4). This
implies that for each R;, there exists a € A(Xg4)
such that R; = S,. O

4 Relations between designs
and X,

The concept of spherical designs was introduced by
Delsarte-Goethals-Seidel®, and we refer also to
Bannai-Bannai®® and® for detail of spherical de-
signs.

Definition 4.1 (Spherical design). Let t be a non-
negative integer. A finite nonempty subset X of
S™~1 is called o spherical t-design if

1 1
o [ @) = 1 3 @)

zeX

holds for all polynomials f(z) = f(z1,%2,...,%m)
of degree at most t. Here v is the Lebesgue measure
on S™1,

Namely, a spherical design is a finite set of points
on a sphere which is “well-distributed”, in the
sense that it allows numerical integration of func-
tions on the sphere up to a certain accuracy. The
strength of design X is defined by ¢(X) := max{k €
Z| X is a k-design but is not a (k + 1)-design}.

A finite subset X in R™ is called an antipodal if
—X C X, where —X := {—z|z € X}. By definition
of design, the strength of an antipodal design must
be odd.
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Since the set X4 of minimal vectors of the Barnes—
Wall lattice Ly is antipodal and from Bachoc®, we
can determine or estimate the strength of Xy for
each d > 1:

Fact 4.2. The following hold.

(i) When d = 1, X1 is isomorphic to a square in
St. Namely this implies t(X1) = 3.

(i) When d = 2, X, is isomorphic to a D4-root
system in S3. Namely this implies t(X5) = 5.

(i5) When this implies d = 3, X3 1is isomorphic to
a Eg-root system in S7. Namely this implies
HX3)="7. '

(iv) Ford >4, t(Xq) > 1.

There are some relations between designs and Q-
polynomial association schemes.

Fact 4.3 (cf.®). Let X be a nonempty finite subset
in S™71 Let s(X) := #A(X) — 1. Suppose X is
antipodal and t(X) > 2s(X) — 3, then X has the
structure of a Q-polynomial association scheme with
relations obtained from the inner product set.

From Facts 4.2 and 4.3, we obtain the Q-
polynomial property of Xj.

Corollary 4.4. The following hold.

(i) When d = 1, s(X1) = 2. Thus X; is a Q-
polynomial association scheme.

(i)) When d = 2, s(X2) = 4. Thus X5 is a Q-
polynomial association scheme.

(i15) When d = 3, s(X3) = 4. Thus X3 1s a Q-
polynomial association scheme.

Remark that when d = 4, X4 does not satisfies
t(X) > 2s(X) — 3. Thus we cannot check whether
X4 has the @-polynomial property or not. In the
next section, we will investigate the properties of
the 16-dimensional Barnes—Wall lattice Ly and its
minimal vectors Xy.

5 The 16-dimensional Barnes—
Wall lattice Ly = BWy4

This section due to Conway—Sloane(®). There are
several constructions of thel6-dimensional Barnes—
Wall lattice BW1¢. Construction B applied to the
first-order Reed—Muller code of length for which
det = 256, minimal norm = 4, kissing number 7 =
4320, the minimal vectors consist of 480 of the form
271/2(+22 0') and 3840 of the form 271/2(418,08),
where the positions of the + 1’s form one of the
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30 codewords of weight 8 in the first-order Reed-
Muller code-and there are an even number of mi-
nus signs. The number of elements in each shell of
BW g is given in Table 1. That is, for each integer
m, N(m) := #{z € BWys|z - 2'/2 = m} appear in
Table 1.

Table 1: The shells of BW5.

m N(m) | m N(m)
0 1132 8593797600
2 0|34 11585617920
4 4320 | 36 19590534240
6 61440 | 38 25239859200
8 522720 | 40 40979580480

10 2211840 | 42 50877235200

12 8960640 | 44 79783021440

14 23224320 | 46 96134307840

16 67154406 | 48 146902369920
18 135168000 | 50 172337725440
20 319809600 | 52 256900127040
22 550195200 | 54 295487692800
24 1147643520 | 56 431969276160
26 1771683840 | 58 487058227200
28 3371915520 | 60 699846624000
30 4826603520 | 62 776820326400

BW;s may be constructed from the Leech lattice
Aoy. There are involutory symmetries of Ay that
fix a 16-space, and the portion of A,y that lies in
such a space is a copy of BWg.

As the previous facts for Ly, Ly may be a vari-
able lattice. From this reason, we also hope that
X4 has the @Q-polynomial property like the cases for
d = 1,2,3. Unfortunately, X, does not have the
@-polynomial property.

Theorem 5.1. For a € A(Xy), let Ry :={(z,y) €
X4 x X4|z -y = af. Then the association scheme
(X4, {Ra}taca(xy)) s not a Q-polynomial associa-
tion scheme.

In order to prove this theorem, we use an excess
theorem for 2-designs. For a finite subset X in S™~!
of size n, the vector space of R-valued functions on
X is denoted by C(X). We equip C(X) with an
inner product by

(f9)== 3 F(@)o(x)

zeX

for f,g € C(X). For a polynomial p € R[t] and a €
X, we define the zonal polynomial (,(p) : X — R of
p at a by (a(p)(z) = p(a - x). We further define the
vector spaces Polg(X) recursively by setting:

e Polg(X) is the set of constant functions on X,
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e Pol; (X) = Spang{(,(p) |a € X,degp < 1},

e Poly(X) = Spang{fg|f € Poli(X), g €
Polx_1(X)} for k > 2.

We set
S(X) :=min{0 <14 < s(X) | Pol;(X) = C(X)},
and we call S(X) the degree of X. It is easy to

show S(X) < s(X). Let Harmg(X) = Polg(X) and
we define

Harmy (X) = Polg(X) N Poly_ (X)* for k> 1.

Its elements are harmonic polynomials of degree k.
From the definition of the degree of X, we get

e Harm;(X) # {0} for 0 < j < S(X),
e O(X)= @f:(é() Harm; (X).

For @ € A(X), denote #R, by ko We put
Z*(t) = [laea(x)(t — @). We define an inner prod-
uct on R[¢]/(Z*) by, for p,q € R[t]/(Z*),

<p,q)=7—115 > kap(e)q(e).

acA(X)

The predegree polynomials qo, q1, . - -, Gs(x) of X are
the polynomials satisfying deg g = k and (g, qn) =
Oknqr(m) for any k,h € {0,1,...,s(X)}. As a
sequence of orthogonal polynomials, the predegree
polynomials satisfy a three-term recurrence of the
form

tqk = b_1qr-1+ a5k +C7¢+1Qk+1 (0 <k < s(X)),

where the constants b;_;, aj; and cj,, are the
Fourier coefficients of ¢gy in terms of {qi}fgg) re-

spectively (and b*; = C:(X)+1 =0).

Fact 5.2 (Excess theorem for 2-designs, cf. Kuri-
hara®V). Suppose a spherical 2-design X is with
S(X) = s(X). Then the inequality

dim Harms(x) (X) < q.s(X)(m)

holds and equality is attained if and only if X has
the structure of a Q-polynomial association scheme
with the relation obtained from A(X).

Proof of Theorem 5.1. Assume (X4, {Ra}aca(xy))
is a @-polynomial association scheme. By Fact 5.2,
the last predegree polynomial gg of X, satisfies

¢6(16) = dim Harmg(X,)

This implies that ¢g(16) must be an integer.

From an easy calculation, we get kq’s of Xy:
A(X4) ={0,£1,+2+4} and ko = 1710-4320, kyq =
1024-4320, k1o = 280-4320 and k44 = 1-4320. Also
we can determine the predegree polynomials of Xy:

89
° qot) =1,
° ql(t) =t

9 2
o qo(t) = E(—lﬁ'i't )

15 / 128
® Q3(t) = a (—Tt—Ft?’)
o qut) = A7 (8192 — 1152¢% + 15¢%)

¢ 6656
3

o gs5(t) = Tog4 (4096 — 1602 + %)

3(—917504 + 182272t% — 3760t* + 13t5)

* 4(t) = 212992

and we have ¢5(16) = 3192/13 ¢ Z. This is a con-
tradiction. Therefore (X4, {Ra}aca(x,)) is not a
Q@-polynomial association scheme. O
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